MURRAY R. BREMNER, University of Saskatchewan
Computing a short basis for the nullspace of a modular matrix
Given a vector X over the field with p elements, define its length to be the sum of the squares of the symmetric representatives of its components. Define the length of a finite set of vectors to be the base 10 logarithm of the product of the lengths of the vectors. I will present an evolutionary algorithm which attempts to determine the shortest basis of the nullspace of a modular matrix A. To begin, compute M, the matrix in RREF whose k rows form a basis for the null space of A. One generation consists of six steps. Step 1 (mutation): Randomly permute the columns of A to obtain B. Step 2: Compute C, the matrix in RREF whose k rows form a basis for the null space of B. Step 3: Unpermute the columns of C to obtain N. Step 4 (recombination): Stack M and N and sort the $2 k$ rows by increasing length to obtain D. Step 5 (selection): Determine the lexicographically minimal subset of the rows of D which forms a basis of the nullspace of A. Step 6 (reproduction): Replace M by the matrix consisting of these k rows of D. I will present experimental results showing the behavior of this algorithm over thousands of generations.

