ROGHAYEH MALEKI, University of Regina *Maschke's Theorem for Table Algebras*

We give a generalization of the averaging argument for Maschke's theorem in the setting of table algebras (aka. fusion rings). Table algebras are algebras with involution over \mathbb{C} with finite basis B that contains 1, is *-closed, has non-negative real structure constants $\{\lambda_{bcd} : b, c, d \in B\}$ given by $bc = \sum_d \lambda_{bcd} d$, and satisfies the <u>pseudo-inverse condition</u>: $\lambda_{bc1} > 0 \iff c = b^*$, and $\lambda_{b*b1} = \lambda_{bb*1}$. When F is a field with (possibly trivial) involution⁻ containing the structure constants $\{\lambda_{bcd} : b, c, d \in B\}$, then FB becomes an F-algebra with involution defined by

$$\left(\sum_{b\in B}\alpha_b b\right)^* = \sum_{b\in B}\bar{\alpha_b}b^*.$$

This version of Maschke's theorem gives sufficient conditions on the characteristic of the field F for FB to be a semisimple algebra, in terms of arithmetic properties of the table algebra basis B.