NICO LOMBARDI, Memorial University of Newfoundland and University of Firenze
Fractional Sobolev trace inequalities
We will present some Sobolev type inequalities regarding the trace of a function for the half-space \mathbb{R}_{+}^{n} in the classical and fractional case.
We will start to show the result due to Escobar and independently to Beckner: there exists a positive constant K_{n}, depending only on n, such that for any function $f \in W^{1,2}\left(\mathbb{R}_{+}^{n}\right)$, it holds

$$
\left(\int_{\mathbb{R}^{n-1}}|f(0, x)|^{\frac{2(n-1)}{n-2}} d x\right)^{\frac{n-1}{n-2}} \leq K_{n} \int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)|^{2} d x d t
$$

where $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{n-1}=\mathbb{R}_{+}^{n}$.
Afterwards we will consider the case of fractional Sobolev inequalities, presenting the fractional counterpart of the previous statement and some possible generalizations. (This is a work in progress with Jie Xiao)

