A. KOGOJ, University of Urbino

Harnack Inequality in sub-Riemannian settings

We consider nonnegative solutions $u:\Omega\longrightarrow\mathbb{R}$ of second order hypoelliptic equations

$$\mathcal{L}u(x) = \sum_{i,j=1}^{n} \partial_{x_i} \left(a_{ij}(x) \partial_{x_j} u(x) \right) + \sum_{i=1}^{n} b_i(x) \partial_{x_i} u(x) = 0,$$

where Ω is a bounded open subset of \mathbb{R}^n and x denotes the point of Ω . For any fixed $x_0 \in \Omega$, we prove a Harnack inequality of this type

$$\sup_{K} u \leq C_{K} u(x_{0}) \qquad \forall \ u \text{ such that } \mathcal{L}u = 0, u \geq 0,$$

where K is any compact subset of the interior of the \mathcal{L} -propagation set of x_0 and the constant C_K does not depend on u. The result presented are obtained in collaboration with Sergio Polidoro.