CHUN-KIT LAI, McMaster University

Classification of self-affine tile digit sets as product-forms

Let A be an expanding matrix on \mathbb{R}^s with integral entries. A fundamental question in the fractal tiling theory is to understand the structure of the digit set $\mathcal{D} \subset \mathbb{Z}^s$ so that the integral self-affine set $T(A, \mathcal{D})$ is a translational tile on \mathbb{R}^s . We first show that a tile digit set in \mathbb{Z}^s must be an integer tile (i.e. $\mathcal{D} \oplus \mathcal{L} = \mathbb{Z}^s$ for some discrete set \mathcal{L}). We completely classify such tile digit sets $\mathcal{D} \subset \mathbb{Z}$ on \mathbb{R}^1 by expressing the mask polynomial $P_{\mathcal{D}}$ into product of cyclotomic polynomials and putting it in the trees of cyclotomic polynomials. This allows us to combine the technique of Coven and Meyerowitz on integer tiling on \mathbb{R}^1 to characterize explicitly all tile digit sets $\mathcal{D} \subset \mathbb{Z}$ with $A = p^{\alpha}q$ (p, q distinct primes) as modulo product-form of some order, an advance of the previously known results for $A = p^{\alpha}$ and pq.