KEVIN HARE, University of Waterloo
Representation of integers base d with digits $0,1, \cdots, q-1$
Let d and q be positive integers, and consider representing a positive integer n with base d and digits $0,1, \cdots, q-1$. Clearly if $q<d$, then not all positive integers can be represented. If $q=d$, every positive integer can be represented in exactly one way. If $q>d$, then there may be mutliple ways of representing the integer n. For example, if $d=2$ and $q=3$ we might represent 6 as $110=1 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}$ as well as $102=1 \cdot 2^{2}+0 \cdot 2^{1}+2 \cdot 2^{0}$. (This list is not complete.) Let $f_{d, q}(n)$ be the number of representations of n with base d and digits $0,1, \cdots, q-1$. In this talk we will look at the asymptotics of $f_{d, q}(n)$ as $n \rightarrow \infty$. This depends in a rather strange way on the Generalized Thue-Morse sequence. Many of the results are computationally/experimentally true, although no proofs are known.

