KEN DAVIDSON, University of Waterloo

Semicrossed products of the disk algebra

If α is the endomorphism of the disk algebra, $A(\mathbb{D})$, induced by composition with a finite Blaschke product b, then the semicrossed product $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ imbeds canonically, completely isometrically into $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$. Hence in the case of a non-constant Blaschke product b, the C*-envelope has the form $C(\mathcal{S}_b) \times_s \mathbb{Z}$, where (\mathcal{S}_b, s) is the solenoid system for (\mathbb{T}, b) . In the case where b is a constant, then the C*-envelope of $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is strongly Morita equivalent to a crossed product of the form $C(\mathcal{S}_e) \times_s \mathbb{Z}$, where $e: \mathbb{T} \times \mathbb{Z}^+ \longrightarrow \mathbb{T} \times \mathbb{Z}^+$ is a suitable map and (\mathcal{S}_e, s) is the solenoid system for $(\mathbb{T} \times \mathbb{Z}^+, e)$.