EVA KOO, University of British Columbia, Vancouver, BC

Asymptotic stability of small solitary waves for nonlinear Schrödinger equations with electromagnetic potential in \mathbb{R}^3

Consider the nonlinear magnetic Schrödinger equation for $u \colon \mathbb{R}^3 \times \mathbb{R} \to \mathbb{C}$,

 $iu_t = (i\nabla + A)^2 u + Vu + g(u), \quad u(x,0) = u_0(x),$

where $A: \mathbb{R}^3 \to \mathbb{R}^3$ is the magnetic potential, $V: \mathbb{R}^3 \to \mathbb{R}$ is the electric potential, and $g = \pm |u|^2 u$ is the nonlinear term. We will show that under suitable assumptions on A and V, if the initial data u_0 is small enough in H^1 , then the solution u(x,t) decomposes uniquely into a standing wave part and a dispersive part which scatters.