Consider a *d*-class cometric (or *Q*-polynomial) association scheme with vertex set *X* and primitive idempotents E_0, E_1, \ldots, E_d forming a *Q*-polynomial ordering. For each vertex *a*, we introduce an indeterminate Z_a and map the polynomial ring $\mathbb{C}[Z_1, \ldots, Z_v]$ (v = |X|) to the standard module \mathbb{C}^X by first mapping Z_a to the column of E_1 indexed by *a*. We extend this by ordinary addition and entrywise multiplication of vectors. We consider the kernel of this map and conjecture that it is always generated by low degree polynomials.

BILL MARTIN, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA *The ideal of a cometric association scheme*