AMY GLEN, The Mathematics Institute, Reykjavík University, Kringlan 1, IS-103, Iceland Abelian repetitions and crucial words

In 1961, Erdős asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid patterns of the form $X X^{\prime}$ where X^{\prime} is a permutation of X (called abelian squares). This problem has since been solved in the affirmative in a series of papers from 1968 to 1992. Much less is known in the case of abelian k-th powers, i.e., words of the form $X_{1} X_{2} \cdots X_{k}$ where X_{i} is a permutation of X_{1} for $2 \leq i \leq k$.
In this talk, I will discuss crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, I will consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev (2004). I will present a solution for abelian cubes (the case $k=3$) and state a conjectured solution for the case of $k \geq 4$.
This is joint work with Bjarni V. Halldórsson and Sergey Kitaev (Reykjavík University).

