M. BURKE, University of Prince Edward Island

Simultaneous approximation and interpolation of increasing functions by increasing entire functions

When A and B are countable dense subsets of \mathbb{R} , it follows from a well-known result of Cantor that f[A] = B for some order-isomorphism f of \mathbb{R} . A theorem of K. F. Barth and W. J. Schneider states that f can be taken to be the restriction to \mathbb{R} of an entire function. S. Shelah established a consistent analog of Cantor's result for sets of cardinality \aleph_1 by building a model where $2^{\aleph_0} > \aleph_1$ and second category sets of cardinality \aleph_1 exist while any two sets of cardinality \aleph_1 which are nonmeager in every interval are order-isomorphic. In earlier work, we proved that the order-isomorphism in Shelah's theorem can be taken to be the restriction to \mathbb{R} of an entire function. Using an approximation theorem of L. Hoischen, we also showed that the order-isomorphism f can be taken so that it and its first n derivatives approximate those of a given nondecreasing surjection g of class C^n . Hoischen's theorem also gives equality of the derivatives of f and g on a closed discrete set. We incorporate that improvement into our earlier result.

The following special case of the theorem is provable in ZFC. Let $g: \mathbb{R} \to \mathbb{R}$ be a nondecreasing C^n surjection. Let $\varepsilon: \mathbb{R} \to \mathbb{R}$ be positive and continuous. Let $E \subseteq \mathbb{R}$ be a closed discrete set on which g is strictly increasing. Let each of $\{A_i\}$, $\{B_i\}$ be a sequence of pairwise disjoint countable dense subsets of \mathbb{R} such that for each $i \in \mathbb{N}$ and $x \in E$ we have $x \in A_i$ if and only if $g(x) \in B_i$. Then there is an entire function $f: \mathbb{C} \to \mathbb{C}$ such that $f[\mathbb{R}] \subseteq \mathbb{R}$ and the following properties hold.

- (a) For all $x \in \mathbb{R} \setminus E$, Df(x) > 0.
- (b) For k = 0, ..., n and all $x \in \mathbb{R}$, $|D^k f(x) D^k g(x)| < \varepsilon(x)$.
- (c) For k = 0, ..., n and all $x \in E$, $D^k f(x) = D^k g(x)$.
- (d) For each $i \in \mathbb{N}$, $f[A_i] = B_i$.