MARTIAL AGUEH, University of Victoria

Asymptotic behavior for *p*-Laplacian type equations

The long-time asymptotics for the doubly nonlinear diffusion equations $\rho_t = \operatorname{div}(|\nabla \rho^m|^{p-2}\nabla \rho^m)$ in \mathbb{R}^n , is studied for p > 1 and $m > \frac{n-p}{n(p-1)}$. The non-negative solutions of the equation are shown to behave asymptotically, as $t \to \infty$, like Barenblatt-type solutions, and a polynomial decay is established for the convergence with respect to the L^1 -norm. The rate of decay is proved to be optimal when $m \ge \frac{n-p+1}{n(p-1)}$. The method used is based on optimal transportation arguments when $m \ge \frac{n-p+1}{n(p-1)}$, and on a linear analysis when $\frac{n-p}{n(p-1)} < m < \frac{n-p+1}{n(p-1)}$.