THOMAS STOLL, Vienna University of Technology
The sum of digits of primes in $\mathbb{Z}[i]$
We study the distribution of the complex sum-of-digits function s_{q} with basis $q=-a \pm i, a \in \mathbb{Z}^{+}$for Gaussian primes p. Inspired by a recent result of Mauduit and Rivat for the real sum-of-digits function, we here get uniform distribution modulo 1 of the sequence $\left(\alpha s_{q}(p)\right)$ provided $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and q is prime with $a \geq 28$. We also determine the order of magnitude of the number of Gaussian primes whose sum-of-digits evaluation lies in some fixed residue class mod m.
This is joint work with M. Drmota and J. Rivat.

