GERMAN DZYUBENKO, International Mathematical Center of NAS of Ukraine, 01601, Tereschenkivska Str., 3, Kyiv-4, Ukraine
Shape preserving approximation of periodic functions
Let $2 s, s \in \mathbb{N}$, fixed points $y_{i}-\pi \leq y_{2 s}<y_{2 s-1}<\cdots<y_{1}<\pi$ are given and for the other indexes $i \in \mathbb{Z}$, the points y_{i} are defined periodically, i.e., by the equality $y_{i}=y_{i+2 s}+2 \pi, Y:=\left\{y_{i}\right\}_{i \in \mathbb{Z}}$. ¿From the space C of continuous 2π-periodic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the norm $\|f\|:=\max _{x \in \mathbb{R}}|f(x)|$, we extract three sets $\Delta^{(q)}(Y), q=0,1,2$, of all functions f which are, respectively, nonnegative/nondecreasing/convex on $\left[y_{1}, y_{0}\right]$, nonpositive/nonincreasing/concave on $\left[y_{2}, y_{1}\right]$ and so on. Let

$$
E_{n}^{(q)}(f):=\inf _{T_{n} \in \mathbb{T}_{n} \cap \Delta(q)(Y)}\left\|f-T_{n}\right\|, \quad n \in \mathbb{N}
$$

where \mathbb{T}_{n} is the space of trigonometric polynomials of order $\leq n-1$.
Theorem 1 If $f \in \Delta^{(q)}(Y)$ then

$$
E_{n}^{(q)}(f) \leq c(s) \omega_{k}(f, \pi / n), \quad n \geq N(Y), \quad k= \begin{cases}2, & \text { if } q=1 \\ 3, & \text { if } q=0,2\end{cases}
$$

where $\omega_{k}(f, t)$ is the k-th modulus of continuity of $f, c(s)$ and $N(Y)$ are the constants depending only on s and on $\min _{i=1, \ldots, 2 s}\left\{y_{i}-y_{i+1}\right\}$, respectively.

Remark 1 Each of these three estimates is wrong with a greater k. It follows from the Whitney inequality that the constants $c(s)$ and $N(Y)$ can be both replaced simultaneously by $c(Y)$ and 1 , respectively. The respective estimates with $c(s)$ and 1 are wrong.

The case $q=0$ was proved by the author and J. Gilewicz, $q=1$ by the author and M. G. Pleshakov, $q=2$ by the pupil of the author V. D. Zalizko.

