HU ZHANG, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1
Minimizing the Number of Critical Vertices in Network Design
Given a weighted complete graph $G_{K}\left(V, E_{K}\right)$, we study a network design problem to find an edge set $E \subseteq E_{K}$ such that the graph $G(V, E)$ is connected. The power of a vertex $u$ in $G$ is the maximum weight of the edges in $E$ incident with it. Minimizing the maximum vertex power is polynomial time solvable, while minimizing the number of critical vertices with this minimized maximum vertex power is NP-hard. For any fixed $\epsilon>0$ we present a ( $3 / 2+\epsilon$ )-approximation algorithm for the latter problem, and show that this ratio is tight.

