CHRIS MILLER, Ohio State, Columbus

A proper reduct of the real projective hierarchy that defines sets in each projective level

There exist closed $E\subseteq\mathbb{R}$ such that $(\mathbb{R},+,\cdot,E)$ defines a Borel isomorph of $(\mathbb{R},+,\cdot,\mathbb{N})$, and so defines sets of every projective level, yet does not define \mathbb{N} , even when $(\mathbb{R},+,\cdot,E)$ is further expanded by all subsets of every cartesian power of E. Joint work with Harvey Friedman.