We shall discuss some Selection Principles and related games on multicovered spaces. A *multicovered space* is a pair \((X, \mu)\) consisting of a set \(X\) and a family \(\mu\) of covers of \(X\). The category of multicovered space is a natural place where Theory of Selection Principles develops naturally and deeply. A typical selection principle asserts that for each sequence \((u_n)_{n \in \omega} \in \mu^\omega\) of covers of a multicovered space \((X, \mu)\) it is possible to select a cover \(v = \{B_n : n \in \omega\}\) of \(X\) by \(u_n\)-bounded subsets \(B_n \subset X\) so that for each point \(x \in X\) the index set \(\{n \in \omega : x \in B_n\}\) is “large” in a suitable sense. If “large” means “non-empty” (resp. “coinfinite”) then we obtain the classical Menger (resp. Hurewicz) property. The (non-trivial and highly fruitful) interplay between Selection Principles and recently created Theory of Semifilters will be discussed as well.