In a widely circulated preprint (1984) William Thurston introduced the notion of a (geodesic) lamination of the unit disk. Laminations are combinatorial/geometric/topological objects used to study Julia sets of polynomials in analytic complex dynamics. A lamination of the unit disk is a closed collection of chords of the disk that do not cross each other (they may touch at endpoints). Consider the power map \(f(z) = z^d, \ d > 1 \), on the unit circle; extend \(f \) linearly to the lamination (the chords). A chord is critical if its endpoints map to one point. A lamination is invariant if the collection maps to itself forward and backward, with \(d \)-many disjoint pre-images of each chord backward, and \(f \) extends linearly to a positively-oriented confluent map of the disk to itself. The plan is that

1. a lamination is determined by ‘pulling back’ a set of critical chords,
2. the lamination naturally induces an equivalence relation on the unit circle,
3. the quotient space of the circle under this equivalence relation is a topological Julia set, and
4. the topological Julia set is dynamically (and topologically) equivalent to an analytic Julia set for some degree \(d \) polynomial.

But there are obstructions to the fulfillment of the plan. Thurston completed most of the plan for \(d = 2 \), but left some questions unanswered. Moreover, fundamental questions remain unanswered for \(d > 2 \), but recent progress has been made. In particular, one obstruction is that the lamination determined by a collection of critical chords may naturally induce a degenerate equivalence relation, collapsing the circle to a point in the quotient. In this talk, we show how the obstruction arises in degree \(d = 2 \), and give some insight into degree \(d = 3 \) and greater. In a subsequent talk at this meeting, D. Childers provides a complete solution to when degeneracy occurs, for degree \(d = 2 \), in terms of the dynamics of the critical chord, answering an implicit question of Thurston.

This talk is mostly joint work with members of the UAB Laminations Seminar: A. Blokh, L. Oversteegen, D. Childers, G. Brouwer, C. Curry, and P. Eslami.