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The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition sponsored 
by the Canadian Mathematical Society (CMS) and is administered by the Canadian Mathematical 
Olympiad Committee (CMO Committee), a sub-committee of the Mathematical Competitions Committee. 
The CMO was established in 1969 to provide an opportunity for students who performed well in various 
provincial mathematics competitions to compete at a national level. It also serves as preparation for those 
Canadian students competing at the International Mathematical Olympiad (IMO). 

Students qualify to write the CMO by earning a sufficiently high score on the Canadian Open Mathematical 
Challenge (COMC). Other students may be nominated to write the CMO at the discretion of the Chair. 
I am indebted to Peter Minev of the University of Alberta for nominating additional students from the 
Province of Alberta.

The Society is grateful for support from the Sun Life Assurance Company of Canada as sponsor of the 
2006 Canadian Mathematical Olympiad and the other sponsors which include: the Ministry of Education 
of Ontario; the Ministry of Education of Quebec; Alberta Learning; the Department of Education, New 
Brunswick; the Department of Education, Newfoundland and Labrador; the Department of Education, the 
Northwest Territories; the Department of Education of Saskatchewan; the Department of Mathematics 
and Statistics, University of New Brunswick at Fredericton; the Centre for Education in Mathematics and 
Computing, University of Waterloo; the Department of Mathematics and Statistics, University of Ottawa; 
the Department of Mathematics, University of Toronto; the Department of Mathematics, University of 
British Columbia; Nelson Thompson Learning; John Wiley and Sons Canada Ltd.; McGraw-Hill; A.K. 
Peters and Maplesoft. 

I am very grateful to the CMO Committee members who submitted problems that were considered for the 
2007 competition: Robert Barrington Leigh, Ed Doolittle, Chris Fisher, Valeria Pendelieva, Naoki Sato 
and Jacob Tsimerman. [I note with great sorrow and regret the death of Robert Barrington Leigh in August, 
2006.] The papers were marked by Ed Barbeau, Man-Duen Choi, Felix Recio and Adrian Tang, with 
assistance on particular solutions from Chris Fisher, Naoki Sato, Adrian Tang and Ed Wang. Thanks to 
Tom Griffiths of London, ON for validating the paper and to Joseph Khoury for translating the paper into 
French. I am indebted for the hard work done at CMS headquarters by Susan Latreille and the Executive 
Director, Graham Wright, whose continued commitment is a vital ingredient of the success of the CMO.

Ed Barbeau, Chair 
Canadian Mathematical Olympiad Committee 
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The 39th (2007) Canadian Mathematical Olympiad was held on Wednesday, March 28, 2007. A total of 76 
students from 50 schools (46 in Canada, three in the US and one in Hong Kong) wrote the paper. Seven 
Canadian provinces were represented, with the number of contestants as follows:

BC (11)	 AB (6)	 SK (1)	 ON (43)	 QC (2)	 NB (1)	 NS (1) 
 
The 2007 CMO consisted of five questions, each marked out of 7. The maximum score attained by a 
student was 30. The official contestants were grouped into four divisions according to their scores as 
follows:

Division 	 Range of Scores 	 No. of Students 
	 I	 23 - 30 	 	 7 
	 II	 19 - 22 	 	 14 
	 III	 15 - 18 	 	 21 
	 IV	 0 - 14 	 	 33 

FIRST PRIZE — Sun Life Financial Cup — $2000

 
Yan Li	

Dr. Norman Bethune Collegiate Institute, Scarborough, Ontario

 
SECOND PRIZE — $1500

Jonathan Schneider 
University of Toronto Schools, Toronto, Ontario

 
THIRD PRIZE — $1000

Jarno Sun 
Western Canada High School, Calgary, Alberta

HONOURABLE MENTIONS — $500

Jia Guo 
O’Neill Collegiate Vocational Institute	

Oshawa, ON

Kent Huynh 
University of Toronto Schools	

Toronto, ON

Steven Karp 
Lord Byng Secondary School.	

Vancouver, BC

Alexander Remorov 
William Lyon Mackenzie Collegiate Institute	

North York, ON
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Division 1 
23 - 30

Yan Li	 	 	 Dr. Norman Bethune C.I.	 ON
Jonathan Schneider 	 	 University of Toronto Schools	 ON
Jarno Sun	 	 	 Western Canada H.S.	 	 AB
Jeffrey Mo*	 	 William Aberhart H.S.		 AB
Alexander Remorov	 	 William Lyon Mackenzie C.I.	 ON
Steven Karp	 	 Lord Byng S.S.	 	 BC
Jia Guo	 	 	 O’Neill C.V.I.	 	 ON
Kent Huynh	 	 University of Toronto Schools	 ON

Division 2 
19 - 22

Jimmy He	 	 	 Seaquam S.S.	 	 BC
Chen Sun	 	 	 A.B. Lucas S.S.	 	 ON
Linda Zhang	 	 Western Canada H.S.	 	 AB
Lin Fei	 	 	 Don Mills C.I.	 	 ON
Greg Tsang	 	 Crescent School	 	 ON
Haolong Zheng	 	 London Int’l Academy		 ON
William Fu		 	 A.Y. Jackson S.S.	 	 ON
Frank Meng	 	 Burnaby South S.S.	 	 BC
Danny Shi	 	 	 Sir Winston Churchill H. S.	 AB
Bobby Xiao	 	 Walter Murray C.I.	 	 SK
Sunil Argarwal	 	 ICAE	 	 	 MI
Bo Cheng Cui	 	 West Vancouver S.S.	 	 BC
Xiao Jiang		 	 Marianopolis College		 QC
Gary Peng		 	 Don Mills C.I.	 	 ON

Division 3 
15 - 18

Bill Long	 	 Glebe Collegiate Institute	 	 ON
Johnson Mo	 St. George’s School	 	 	 BC
Julian Sun	 	 A.B. Lucas S.S.	 	 	 ON
Arman Tavakoli	 Kitsilano Secondary School	 	 BC
Chen Bo Wan	 Stephen Leacock C.I.	 	 	 ON
Catherine Zhou	 Albert Campbell C.I.	 	 	 ON
Philip Chen	 Glenforest S.S.	 	 	 ON
Joe Kileel	 	 Fredericton H.S.	 	 	 NB
Kyle MJ Kim	 Unionville H.S.	 	 	 ON
Yifan Wang	 Laura Secord S.S.	 	 	 ON
Hao Yan	 	 Jarvis C.I.	 	 	 	 ON
Andy Kong		 Vincent Massey S.S.	 	 	 ON
Sina Makaremi	 John Fraser S.S.	 	 	 ON
Jonathan Zhou	 Burnaby North Secondary School		 BC
Neil Gurram	 ICAE	 	 	 	 MI
Jiayang Jiang	 A.Y. Jackson S.S.	 	 	 ON
Sheng Liu	 	 Stephen Leacock C.I.	 	 	 ON
David Wang	 A.B. Lucas S.S.	 	 	 ON
Shuyun Wu	 Martingrove C.I.	 	 	 ON
Chung Liang Yee	 St. Paul’s Co-educational College		 HK
Tianyuan Zheng	 Phillips Academy	 	 	 MA

Division 4 
0 - 14

Boris Braverman	 Sir Winston Churchill H. S.	 	 AB
Chuan Guo	 St. Pius X High School		 	 ON
Zhiqiang Liu	 Don Mills C.I.	 	 	 ON
Benjamin Niedzielski	 Phillips Academy	 	 	 MA
Max Zhou	 	 L’Amoreaux C.I.	 	 	 ON
Harry Chang	 A.B. Lucas S.S.	 	 	 ON
Simeng Ding	 Waterloo C.I.	 	 	 ON
Dimitri Dziabenko	 Don Mills C.I.	 	 	 ON
Kwonyong Jin	 Phillips Academy	 	 	 MA
Steven Wu		 Martingrove C.I.	 	 	 ON
Terry Zhang	 Sir John A. Macdonald C.I.	 	 ON
Hao Chen	 	 The Woodlands S.	 	 	 ON
Saurabh Pandey	 ICAE	 	 	 	
Zhang Xinyang	 Orillia D.C. & V.I.	 	 	 ON
Shi Yao Zhang	 Jarvis C.I.	 	 	 	 ON
Corey Yednoroz	 Vincent Massey S.S.	 	 	 ON
Yunoso Kim	 Phillips Academy	 	 	 MA
Yang Zhou		 Albert Campbell C.I.	 	 	 ON
Fan Jiang	 	 Albert Campbell C.I.	 	 	 ON
James Yang	 Phillips Academy	 	 	 MA
Frank Ban	 	 Vincent Massey S.S.	 	 	 ON
Ram Bhaskar	 ICAE	 	 	 	 MI
Juliet Ji	 	 Georges Vanier S.S.	 	 	 ON
Heesung Yang	 West Vancouver S.S.	 	 	 BC
Bill Pang	 	 Sir Winston Churchill S.S.	 	 BC
Hwi Lee	 	 Gleneagle S.S.	 	 	 BC
Linhe Li	 	 Queen Elizabeth H.S.	 	 	 NS
Michael Wong	 Tempo School	 	 	 AB
Kou Kou	 	 Bond Academy	 	 	 ON
Ran Li	 	 E.S. Honore-Mercier	 	 	 QC
Takwai Lui		 St. Paul’s Co-educational College		 HK
Vincent Zhou	 Dr. Norman Bethune C.I.	 	 ON
Daniel Lee		 Crescent School	 	 	 ON

*unofficial candidate
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39th Canadian Mathematical Olympiad
Wednesday, March 28, 2007

1. What is the maximum number of non-overlapping 2 × 1 dominoes that can be placed on an 8 × 9
checkerboard if six of them are placed as shown? Each domino must be placed horizontally or
vertically so as to cover two adjacent squares of the board.

2. You are given a pair of triangles for which

(a) two sides of one triangle are equal in length to two sides of the second triangle, and

(b) the triangles are similar, but not necessarily congruent.

Prove that the ratio of the sides that correspond under the similarity is a number between 1
2
(
√
5−1)

and 1
2
(
√
5 + 1).

3. Suppose that f is a real-valued function for which

f(xy) + f(y − x) ≥ f(y + x)

for all real numbers x and y.

(a) Give a nonconstant polynomial that satisfies the condition.

(b) Prove that f(x) ≥ 0 for all real x.

Go to page 2 for the remaining questions

1
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4. For two real numbers a, b, with ab = 1, define the ∗ operation by

a ∗ b =
a + b− 2ab

1− ab
.

Start with a list of n ≥ 2 real numbers whose entries x all satisfy 0 < x < 1. Select any two numbers
a and b in the list; remove them and put the number a ∗ b at the end of the list, thereby reducing its
length by one. Repeat this procedure until a single number remains.

(a) Prove that this single number is the same regardless of the choice of pair at each stage.

(b) Suppose that the condition on the numbers x in S is weakened to 0 < x ≤ 1. What happens if
S contains exactly one 1?

5. Let the incircle of triangle ABC touch sides BC, CA and AB at D, E and F , respectively. Let Γ,Γ1,
Γ2 and Γ3 denote the circumcircles of triangle ABC, AEF , BDF and CDE respectively.

Let Γ and Γ1 intersect at A and P , Γ and Γ2 intersect at B and Q, and Γ and Γ3 intersect at C and
R.

(a) Prove that the circles Γ1, Γ2 and Γ3 intersect in a common point.

(b) Show that PD, QE and RF are concurrent.

END

2
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39th Canadian Mathematical Olympiad

Wednesday, March 29, 2007

Solutions to the 2007 CMO paper

Solution to 1. Identify five subsets A,B,C,D,E of the board, where C consists of the squares occupied by the six dominos
already placed, B is the upper right corner, D is the lower left corner, A consists of the squares above and to the left of
those in B ∪ C ∪D and E consists of the squares below and to the right of those in B ∪ C ∪D. The board can be coloured
checkerboard fashion so that A has 13 black and 16 white squares, B a single white square, E 16 black and 13 white squares
and D a single black square. Each domino beyond the original six must lie either entirely in A∪B∪D or C ∪B∪D, either of
which contains at most 14 dominos. Thus, altogether, we cannot have more that 2×14+6 = 34 dominos. This is achievable,
by placing 14 dominos in A ∪D and 14 in E ∪B.

Solution to 2. If the triangles are isosceles, then they must be congruent and the desired ratio is 1. For, if they share
equal side lengths, at least one of these side lengths on one triangle corresponds to the same length on the other. And if they
share unequal side lengths, then either equal sides correspond or unequal sides correspond in both directions and the ratio is
1. This falls within the bounds.

Let the triangles be scalene. It is not possible for the same length to be an extreme length (largest or smallest) of both
triangles. Therefore, we must have a situation in which the corresponding side lengths of the two triangles are (x, y, z) and
(y, z, u) with x < y < z and y < z < u. We are given that y/x = z/y = u/z = r > 1. Thus, y = rx and z = ry = r2x. From

the triangle inequality z < x + y, we have that r2 < 1 + r. Since r2 − r − 1 < 0 and r > 1, 1 < r < 1
2 (
√

5 + 1). The ratio of

the dimensions from the smaller to the larger triangle is 1/r which satisfies 1
2 (
√

5 − 1) < 1/r < 1. The result follows.

Solution to 3. (a) Let f(x) = x2 + 4. Then

f(xy) + f(y − x) − f(y + x) = (x2y2 + 4) + (y − x)2 + 4 − (y + x)2 − 4
= (xy)2 − 4xy + 4 = (xy − 2)2 ≥ 0 . (1)

Thus, f(x) = x2 + 4 satisfies the condition.

1
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(b) Consider (x, y) for which xy = x + y. Rewriting this as (x− 1)(y − 1) = 1, we find that this has the general solution
(x, y) = (1+ t−1, 1+ t), for t �= 0. Plugging this into the inequality, we get that f(t− t−1) ≥ 0 for all t �= 0. For arbitrary real
u, the equation t − t−1 = u leads to the quadratic t2 − ut− 1 = 0 which has a positive discriminant and so a real solution.
Hence f(u) ≥ 0 for each real u.

Comment. The substitution v = y − x, u = y + x whose inverse is x = 1
2 (u − v), y = 1

2 (u + v) renders the condition as

f(1
4 (u2−v2))+f(v) ≥ f(u). The same strategy as in the foregoing solution leads to the choice u = 2+

√
v2 + 4 and f(v) ≥ 0

for all v.

Solution to 4 (b). It is straightforward to verify that a ∗ 1 = 1 for a �= 1, so that once 1 is included in the list, it can never
by removed and so the list terminates with the single value 1.

Solution to 4 (a). There are several ways of approaching (a). It is important to verify that the set {x : 0 < x < 1} is
closed under the operation ∗ so that it is always defined.

If 0 < a, b < 1, then

0 <
a + b− 2ab

1 − ab
< 1 .

The left inequality follows from
a + b− 2ab = a(1 − b) + b(1 − a) > 0

and the right from

1 − a + b− 2ab

1 − ab
=

(1 − a)(1 − b)

1 − ab
> 0 .

Hence, it will never happen that a set of numbers will contain a pair of reciprocals, and the operation can always be performed.

Solution 1. It can be shown by induction that any two numbers in any of the sets arise from disjoint subsets of S.

Use an induction argument on the number of entries that one starts with. At each stage the number of entries is reduced
by one. If we start with n numbers, the final result is

σ1 − 2σ2 + 3σ3 − · · · + (−1)n−1nσn

1 − σ2 + 2σ3 − 3σ4 + · · · + (−1)n−1(n− 1)σn

,

where σi is the symmetric sum of all
�

n

i

�

i−fold products of the n elements xi in the list.

Solution 2. Define

a ∗ b =
a + b− 2ab

1 − ab
.

This operation is commutative and also associative:

a ∗ (b ∗ c) = (a ∗ b) ∗ c =
a + b + c− 2(ab + bc + ca) + 3abc

1 − (ab + bc + ca) + 2abc
.

Since the final result amounts to a ∗−product of elements of S with some arrangement of brackets, the result follows.

Solution 3. Let φ(x) = x/(1 − x) for 0 < x < 1. This is a one-one function from the open interval (0, 1) to the half line
(0,∞). For any numbers a, b ∈ S, we have that

φ

�

a + b− 2ab

1 − ab

�

= a+b−2ab

(1−ab)−(a+b−2ab) = a+b−2ab

1−a−b+ab

= a

1−a
+ b

1−b
= φ(a) + φ(b) . (2)

Let T = {φ(s) : s ∈ S}. Then replacing a, b in S as indicated corresponds to replacing φ(a) and φ(b) in T by φ(a) + φ(b) to
get a new pair of sets related by φ. The final result is the inverse under φ of

�{φ(s) : s ∈ S}.

Solution 4. Let f(x) = (1− x)−1 be defined for positive x unequal to 1. Then f(x) > 1 if and only if 0 < x < 1. Observe
that

f(x ∗ y) =
1 − xy

1 − x− y + xy
=

1

1 − x
+

1

1 − y
− 1 .

2
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If f(x) > 1 and f(y) > 1, then also f(x ∗ y) > 1. It follows that if x and y lie in the open interval (0, 1), so does x ∗ y. We
also note that f(x) is a one-one function.

To each list L, we associate the function g(L) defined by

g(L) =
�

{f(x) : x ∈ L} .

Let Ln be the given list, and let the subsequent lists be Ln−1, Ln−2, · · · , L1, where Li has i elements. Since f(x ∗ y) =
f(x) + f(y) − 1, g(Li) = g(Ln) − (n − i) regardless of the choice that creates each list from its predecessors. Hence
g(L1) = g(Ln)− (n− 1) is fixed. However, g(L1) = f(a) for some number a with 0 < a < 1. Hence a = f−1(g(Ln)− (n− 1))
is fixed.

Solution to 5 (a). Let I be the incentre of triangle ABC. Since the quadrilateral AEIF has right angles at E and F , it
is concyclic, so that Γ1 passes through I. Similarly, Γ2 and Γ3 pass through I, and (a) follows.

Solution to 5 (b). Let ω and I denote the incircle and incentre of triangle ABC, respectively. Observe that, since AI
bisects the angle FAE and AF = AE, then AI right bisects the segment FE. Similarly, BI right bisects DF and CI right
bisects DE.

We invert the diagram through ω. Under this inversion, let the image of A be A′, etc. Note that the centre I of inversion
is collinear with any point and its image under the inversion. Under this inversion, the image of Γ1 is EF , which makes A′

the midpoint of EF . Similarly, B′ is the midpoint of DF and C′ is the midpoint of DE. Hence, Γ′, the image of Γ under
this inversion, is the circumcircle of triangle A′B′C′, which implies that Γ′ is the nine-point circle of triangle DEF .

Since P is the intersection of Γ and Γ1 other than A, P ′ is the intersection of Γ′ and EF other than A′, which means
that P ′ is the foot of the altitude from D to EF . Similarly, Q′ is the foot of the altitude from E to DF and R′ is the foot
of the altitude from F to DE.

Now, let X , Y and Z be the midpoints of arcs BC, AC and AB on Γ respectively. We claim that X lies on PD.

Let X ′ be the image of X under the inversion, so I, X and X ′ are collinear. But X is the midpoint of arc BC, so A,
A′, I, X ′ and X are collinear. The image of line PD is the circumcircle of triangle P ′ID, so to prove that X lies on PD, it
suffices to prove that points P ′, I, X ′ and D are concyclic.

We know that B′ is the midpoint of DF , C′ is the midpoint of DE and P ′ is the foot of the altitude from D to EF .
Hence, D is the reflection of P ′ in B′C′.

Since IA′ ⊥ EF , IB′ ⊥ DF and IC′ ⊥ DE, I is the orthocentre of triangle A′B′C′. So, X ′ is the intersection of the
altitude from A′ to B′C′ with the circumcircle of triangle A′B′C′. From a wellknown fact, X ′ is the reflection of I in B′C′.
This means that B′C′ is the perpendicular bisector of both P ′D and IX ′, so that the points P ′, I, X ′ and D are concyclic.

Hence, X lies on PD. Similarly, Y lies on QE and Z lies on RF . Thus, to prove that PD, QE and RF are concurrent,
it suffices to prove that DX , EY and FZ are concurrent.

To show this, consider tangents to Γ at X , Y and Z. These are parallel to BC, AC and AB, respectively. Hence, the
triangle ∆ that these tangents define is homothetic to the triangle ABC. Let S be the centre of homothety. Then the
homothety taking triangle ABC to ∆ takes ω to Γ, and so takes D to X , E to Y and F to Z. Hence DX , EY and FZ
concur at S.

Comment. The solution uses the following result: Suppose ABC is a triangle with orthocentre H and that AH intersects
BC at P and the circumcircle of ABC at D. Then HP = PD. The proof is straightforward: Let BH meet AC at Q. Note
that AD ⊥ BC and BQ ⊥ AC. Since ∠ACB = ∠ADB,

∠HBC = ∠QBC = 90◦ − ∠QCB = 90◦ − ∠ACB = 90◦ − ∠ADB = ∠DBP ,

from which follows the congruence of triangle HBP and DBP and equality of HP and PD.

Solution 2. (a) Let Γ2 and Γ3 intersect at J . Then BDJF and CDJE are concyclic. We have that

∠FJE = 360◦ − (∠DJF + ∠DJE)
= 360◦ − (180◦ − ∠ABC + 180◦ − ∠ACB)

= ∠ABC + ∠ACB = 180◦ − ∠FAE . (3)

Hence AFJE is concyclic and so the circumcircles of AEF , BDF and CED pass through J .

(b) [Y. Li] Join RE, RD, RA and RB. In Γ3, ∠ERD = ∠ECD = ∠ACB and ∠REC = ∠RDC. In Γ, ∠ARB = ∠ACB.
Hence, ∠ERD = ∠ARB =⇒ ∠ARE = ∠BRD. Also,

∠AER = 180◦ − ∠REC = 180◦ − ∠RDC = ∠BDR .

3
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Therefore, triangle ARE and BRD are similar, and AR : BR = AE : BD = AF : BF . If follows that RF bisects angle
ARB, so that RF passes through the midpoint of minor arc AB on Γ. Similarly, PD and QE are respective bisectors of
angles BPC and CQA and pass through the midpoints of the minor arc BC and CA on γ..

Let O be the centre of circle Γ, and U , V , W be the respective midpoints of the minor arc BC, CA, AB on this circle,
so that PU contains D, QV contains E and RW contains F . It is required to prove that DU , EV and FW are concurrent.

Since ID and OU are perpendicular to BC, ID�OU . Similarly, IE�OV and IF�OW . Since |ID| = |IE| = |IF | = r (the

inradius) and |OU | = |OV | = |OW | = R (the circumradius), a translation
−→
IO followed by a dilatation of factor R/r takes

triangle DEF to triangle UVW , so that these triangles are similar with corresponding sides parallel.

Suppose that EV and FW intersect at K and that DU and FW intersect at L. Taking account of the similarity of the
triangles KEF and KVW , LDF and LUW , DEF and UVW , we have that

KF : FW = EF : VW = DF : UW = LF : LW ,

so that K = L and the lines DU , EV and FW intersect in a common point K, as desired.

4
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The Graders’ Report

The grading was done by Ed Barbeau, Man-Duen Choi, Felix Recio and Adrian Tang. The top 
papers were reviewed in detail also by Ed Wang, and assistance in evaluating specific problems 
was provided by Chris Fisher, Naoki Sato and Jacob Tsimerman. The papers in the top three 
divisions and many of those in the fourth were independently marked by at least two people, and 
at least four people determined the ranking of the top dozen. 

The problems were designed so that there was a part that students could do for a reasonably 
straightforward 2 marks. This included a specific covering with dominoes in Question 1, as well 
as Problems 3(a), 4(b) and 5(a). There were a surprising nmber of students who did not take 
advantage of this.

78 students were registered to write the CMO, but two failed to show up on the day of the 
competition. 

The marks awarded on the several problems are given in the following table:

Problem 1:  Two marks were awarded for an example of a placement of 34 dominoes. Several 
students who had an otherwise correct argument failed to show that the maximum of 34 was 
indeed possible. Many students coloured the checkerboard with black and white squares and 
exploited the fact that a domino had to cover a square of each colour. A common strategy was to 
split the uncovered squares into two triangular regions and deal with each separately, although 
not everyone handled the possibility of a domino spilling out of a region very well. The most 
successful arguments excluded the lower left and upper right cells of the checkerboard from the 
division and argued that even if a domino from one of the triangular regions impinged upon them, 
the imbalance between the white and black squares available did not allow for a complete covering 
of all cells. A few students looked at a case-by-case analysis according to how the lower left and 
upper right cells might or might not be covered, but this made for a long and detailed solution. This 
problem was posed by the late Robert Barrington Leigh.

Marks #1 #2 #3 #4 #5
7 24 23 5 6 1
6 5 12 1 25 0
5 10 8 1 11 1
4 4 8 2 4 0
3 4 5 5 3 0
2 16 7 23 10 39
1 2 7 6 2 3
0 6 4 23 5 4
- 5 2 10 10 28
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Problem 2: Virtually everyone tried this question, but it proved to be difficult to pin down. One good 
approach was to dispose of the possibility that the triangles were isosceles (and hence congruent) to 
begin with, and then assume that they were scalene. For non-congruent triangles, the observation 
that the lengths of the longest side of the larger triangle and the shortest side of the smaller triangle 
could not be matched in the other triangle avoided having to consider a large number of cases and 
allowed for a fairly short argument. Many students who tried an exhautive case by case pairing 
of the sides of the two triangles missed out cases and made assumptions that were not justified. 
While everyone who solved the problem understood the role of the triangle inequality for the side 
lengths, many were careless in setting up the quadratic inequality that had to be satisfied by the 
ratio or in solving it. This problem is due to Chris Fisher.

Problem 3: There were more candidates than expected who found the example x2 + 4, but a few 
gave no justification. A couple of students did not know what a polynomial was. The successful 
solutions considered the situations where xy = x + y, although there were some who failed to 
show adequately that this covered all possible values of the variable. Those who failed to find this 
argument often got to the point of showing that f(0) ≥ 0 and f(x) + f(-x) >= 0, but either could not 
proceed further or messed up on the inequalities.

Problem 4: On the whole, this problem was better done than expected, with students realizing the 
value of showing that the operation was associative. However, there were two key observtions 
that were needed for full credit. It was necessary to show that the domain 0 < x < 1 was preserved 
under * so that there was no possibility of the denominator vanishing and also to at least mention 
that the operation was commutative. A number of students recognized the expression for an n-fold 
combination of elements, although some did not successfully manage the details of the induction 
argument. Many students got part (b), which was worth 2 points. This problem is due to Jacob 
Tsimerman.

Problem 5: This was expected to be a difficult problem, so part (a) was appended so that students 
could pick up an easy 2 points and also, perhaps, be induced to consider an inversion in the 
incircle, as a route to success. The first place candidate in fact gave a very nice argument distinct 
from that projected by the examiners. Only one other student made significant progress, but failed 
to complete the solution. This problem is due to Naoki Sato.


