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The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition sponsored 
by the Candian Mathematical Society (CMS) and is administered by the Canadian Mathematical 
Olympiad Committee (CMO Committee), a sub-committee of the Mathematical Competitions 
Committee. The CMO was established in 1969 to provide an opportunity for students who performed 
well in various provincial mathematics competitions to compete at a national level. It also serves as 
preparation for those Canadian students competing at the International Mathematical Olympiad (IMO). 
Students qualify to write the CMO by earning a sufficiently high score on the Canadian Open 
Mathematical Challenge (COMC). Students may also be nominated to write the CMO by a provincial 
coordinator. 
The Society is grateful for support from the Sun Life Assurance Company of Canada as the Major 
Sponsor of the 2005 Canadian Mathematical Olympiad and the other sponsors which include: the 
Ministry of Education of Ontario; the Ministry of Education of Quebec; Alberta Learning; the 
Department of Education, New Brunswick; the Department of Education, Newfoundland and Labrador; 
the Department of Education, the Northwest Territories; the Department of Education of Saskatchewan; 
the Department of Mathematics and Statistics, University of Winnipeg; the Department of Mathematics 
and Statistics, University of New Brunswick at Fredericton; the Centre for Education in Mathematics 
and Computing, University of Waterloo; the Department of Mathematics and Statistics, University 
of Ottawa; the Department of Mathematics, University of Toronto; the Department of Mathematics, 
University of British Columbia; Nelson Thompson Learning; John Wiley and Sons Canada Ltd.; A.K. 
Peters and Maplesoft. 
The provincial coordinators of the CMO are Peter Crippin, University of Waterloo ON; John Denton, 
Dawson College QC; Diane Dowling, University of Manitoba; Harvey Gerber, Simon Fraser University 
BC; Gareth J. Griffith, University of Saskatchewan; Jacques Labelle, Université du Québec à Montréal; 
Peter Minev, University of Alberta; Gordon MacDonald, University of Prince Edward Island; Roman 
Mureika, University of New Brunswick; Thérèse Ouellet, Université de Montréal QC; Donald Rideout, 
Memorial University of Newfoundland. 
I offer my sincere thanks to the CMO Committee members who helped compose and/or mark the exam: 
Jeff Babb, University of Winnipeg; Robert Craigen, University of Manitoba; James Currie, University of 
Winnipeg; Robert Dawson, St. Mary's University; Chris Fisher, University of Regina; Rolland Gaudet, 
College Universitaire de St. Boniface; J. P. Grossman, D. E. Shaw Research and Development; Richard 
Hoshino, Dalhousie University; Kirill Kopotun, University of Manitoba; Ortrud Oellermann, University 
of Winnipeg; Naoki Sato, William M. Mercer; Anna Stokke, University of Winnipeg; Ross Stokke, 
University of Winnipeg; Daryl Tingley, University of New Brunswick. 
I am grateful to Václav Linek, Charlene Pawluk and Mark Stinner from University of Winnipeg, as well 
as Michelle Davidson from University of Manitoba, for assistance with marking. I would like to thank 
Rolland Gaudet for the French translation of the Exam and Solutions and Matthieu Dufour, Université 
du Québec à Montréal for proofreading many of the French documents. I'm also grateful for the support 
provided by the CMS Mathematics Competitions Committee chaired by George Bluman, University of 
British Columbia. A project of this magnitude cannot run smoothly without a great deal of administrative 
assistance and I'm indebted to Nathalie Blanchard of the CMS Executive Office and Julie Beaver of the 
Mathematics and Statistics Department, University of Winnipeg for all of their help. Finally, a special 
thank you must go out to Graham Wright, Executive Director of the CMS, who oversaw the organization 
of this year's contest and provided a great deal of support and encouragement. His continued 
commitment to the CMO is a vital component of its success. 

 
                                                  Terry Visentin, Chair 

                                                  Canadian Mathematical Olympiad Committee 
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The 37th (2005) Canadian Mathematical Olympiad was held on Wednesday, March 30th, 2005. A total 
of 75 students from 48 schools in eight Canadian provinces wrote the paper. One Canadian student wrote 
the exam in Singapore. The number of contestants from each province was as follows: 

BC(8)  AB(10)  SK(1)  MB(3)  ON(47)  QC(3)  NB(1) PEI(1) 
 
The 2005 CMO consisted of five questions. Each question was worth 7 marks for a total maximum score 
of m=35. The contestants’ performances were grouped into four divisions as follows. 

Division  Range of Scores  No. of Students 
 I  24 < m < 35   10 
 II  18 < m < 24   15 
 III  14 < m < 18   19 
 IV  0 < m < 14   31 

FIRST PRIZE — Sun Life Financial Cup — $2000
Peng Shi 

Sir John A. MacDonald Collegiate Institute, Agincourt, Ontario

SECOND PRIZE — $1500
Richard Peng 

Vaughan Road Academy, Toronto, Ontario

THIRD PRIZE — $1000
Yufei Zhao 

Don Mills Collegiate Institute

HONOURABLE MENTIONS — $500
Boris Braverman 

Sir Winston Churchill High School, Calgary, Alberta

Elyot Grant 
Cameron Heights Collegiate Institute, Kitchener, Ontario

Zheng Guo 
Western Canada High School, Calgary, Alberta

Oleg Ivrii 
Don Mills Collegiate Institute, 

Don Mills, Ontario

 Lin Fei 
Don Mills Collegiate Institute, 

Don Mills, Ontario

Dong Uk (David) Rhee 
McNally School, Edmonton, Alberta

Shaun White 
Vincent Massey Secondary School, 

Windsor, Ontario
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Division 2 
18 < m < 24

Farzin Barekat Sutherland Secondary School BC
Rongtao Dan Point Grey Secondary School BC
Bo Hong Deng Jarvis Collegiate Institute ON
William Fu A.Y. Jackson Secondary School ON
Kent Huynh University of Toronto Schools ON
Aidin Kashigar Sir Frederick Banting Secondary School ON
Viktoriya Krakovna Vaughan Road Academy ON
William Ma Waterloo Collegiate Institute ON
Jennifer Park Bluevale Collegiate Institute ON
Karol Przybytkowski Marianopolis College QC
Luke Schaeffer Centennial C. & V.I. ON
Geoffrey Siu London Central Secondary School ON
Alex Wice Leaside High School ON
Brian Yu Old Scona Academic High School AB
Allen Zhang St. George’s School BC

Division 3 
14 < m < 18

Eunse Chang Don Mills Collegiate Institute ON
Yiru Chen Semiahmoo Secondary School BC
Francis Chung A.B. Lucas Secondary School ON
Shawn C. Eastwood Canadian International School (Singapoor) CA
Weixi Fan Dover Bay Secondary School BC
Mostafa Fatehi Colonel Gray Senior High School PEI
Yingfen Huang The Woodlands School ON
Kevin Lam St. John’s-Ravenscourt School MB
Taotao Liu Vincent Massey Secondary School ON
Nick Murdoch London Central Secondary School ON
Chuanming Qi Jarvis Collegiate Institute ON
Roman Shapiro Vincent Massey Secondary School ON
Jimmy Shen Vincent Massey Secondary School ON
Sarah Sun Holy Trinity Academy AB
Ruiqing Wang Vanier College QC
Malka Wrigley Old Scona Academic High School AB
Wenxin Xu Don Mills Collegiate Institute ON
Qi Yao Glenforest Secondary School ON
Vivian Zhang Bayview Secondary School ON

Division 4 
0 < m < 14

Larry Chang Seaquam Secondary School BC
Harry Chang A.B. Lucas Secondary School ON
Chan Ching Chen St. George’s School BC
Dmitri Dziabenko Don Mills Collegiate Institute ON
Dong (Polly) Han Western Canada High School AB
Ari Jeon North Toronto Collegiate Institute ON
Sha Jin York Mills Collegiate Institute ON
Ying Li Lisgar Collegiate Institute ON
Chen Li Fredericton High School NB
Ye Qing Lin Earl Of March Secondary School ON
Elliot Lipnowski St. John’s-Ravenscourt School MB
Shengyan Liu Martingrove Collegiate Institute ON
Yuchen Mu St. John’s-Ravenscourt School MB
Yongho Park Richmond Hill High School ON
Alex Qi Waterloo Collegiate Institute ON
Difu Shi Glebe Collegiate Institute ON
Hunter Song A.Y. Jackson Secondary School ON
Chen Sun Tom Griffiths Home School   ON
Jia Xi Sun Walter Murray Collegiate Institute SK
Eric Tran Western Canada High School AB
Kuan Chieh Tseng Yale Secondary School BC
Jenny Wang Don Mills Collegiate Institute ON
David Wang London Central Secondary School ON
Frederic Weigand Warr College Jean-De-Brebeuf QC
Steven Wu A.Y. Jackson Secondary School ON
Xiaodi Wu University of Toronto Schools ON
Rui Xue Martingrove Collegiate Institute ON
Yiyi Yang Western Canada High School AB
Johnny Zhang William Lyon Mackenzie C.I. ON
Ken Zhang Western Canada High School AB
Ryan Zhou Adam Scott Collegiate Vocational Institute ON
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37th Canadian Mathematical Olympiad

Wednesday, March 30, 2005

1. Consider an equilateral triangle of side length n, which is divided into unit triangles, as shown. Let
f(n) be the number of paths from the triangle in the top row to the middle triangle in the bottom
row, such that adjacent triangles in our path share a common edge and the path never travels up
(from a lower row to a higher row) or revisits a triangle. An example of one such path is illustrated
below for n = 5. Determine the value of f(2005).

2. Let (a, b, c) be a Pythagorean triple, i.e., a triplet of positive integers with a2 + b2 = c2.

a) Prove that (c/a + c/b)2 > 8.

b) Prove that there does not exist any integer n for which we can find a Pythagorean triple (a, b, c)
satisfying (c/a + c/b)2 = n.

3. Let S be a set of n ≥ 3 points in the interior of a circle.

a) Show that there are three distinct points a, b, c ∈ S and three distinct points A,B,C on the
circle such that a is (strictly) closer to A than any other point in S, b is closer to B than any
other point in S and c is closer to C than any other point in S.

b) Show that for no value of n can four such points in S (and corresponding points on the circle)
be guaranteed.

4. Let ABC be a triangle with circumradius R, perimeter P and area K. Determine the maximum
value of KP/R3.

5. Let’s say that an ordered triple of positive integers (a, b, c) is n-powerful if a ≤ b ≤ c, gcd(a, b, c) = 1,
and an + bn + cn is divisible by a + b + c. For example, (1, 2, 2) is 5-powerful.

a) Determine all ordered triples (if any) which are n-powerful for all n ≥ 1.

b) Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful, but not 2007-
powerful.

[Note that gcd(a, b, c) is the greatest common divisor of a, b and c.]

37th Canadian Mathematical Olympiad
March 30, 2005
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Solutions to the 2005 CMO
written March 30, 2005

1. Consider an equilateral triangle of side length n, which is divided into unit triangles, as
shown. Let f(n) be the number of paths from the triangle in the top row to the middle
triangle in the bottom row, such that adjacent triangles in our path share a common
edge and the path never travels up (from a lower row to a higher row) or revisits a
triangle. An example of one such path is illustrated below for n = 5. Determine the
value of f(2005).

Solution

We shall show that f(n) = (n − 1)!.
Label the horizontal line segments in the triangle l1, l2, . . . as in the diagram below.
Since the path goes from the top triangle to a triangle in the bottom row and never
travels up, the path must cross each of l1, l2, . . . , ln−1 exactly once. The diagonal lines
in the triangle divide lk into k unit line segments and the path must cross exactly one
of these k segments for each k. (In the diagram below, these line segments have been
highlighted.) The path is completely determined by the set of n − 1 line segments
which are crossed. So as the path moves from the kth row to the (k + 1)st row,
there are k possible line segments where the path could cross lk. Since there are
1 · 2 · 3 · · · (n− 1) = (n − 1)! ways that the path could cross the n− 1 horizontal lines,
and each one corresponds to a unique path, we get f(n) = (n − 1)!.
Therefore f(2005) = (2004)!.

l1

l2

l3

l4



Report and results of the Thirty Sixth Canadian Mathematical Olympiad 2004

6

2. Let (a, b, c) be a Pythagorean triple, i.e., a triplet of positive integers with a2+b2 = c2.

a) Prove that (c/a+ c/b)2 > 8.

b) Prove that there does not exist any integer n for which we can find a Pythagorean
triple (a, b, c) satisfying (c/a+ c/b)2 = n.

a) Solution 1

Let (a, b, c) be a Pythagorean triple. View a, b as lengths of the legs of a right
angled triangle with hypotenuse of length c; let θ be the angle determined by the
sides with lengths a and c. Then

� c

a
+

c

b

�2

=

�
1

cos θ
+

1

sin θ

�2

=
sin2 θ + cos2 θ + 2 sin θ cos θ

(sin θ cos θ)2

= 4

�
1 + sin 2θ

sin2 2θ

�
=

4

sin2 2θ
+

4

sin 2θ

Note that because 0 < θ < 90◦, we have 0 < sin 2θ ≤ 1, with equality only if
θ = 45◦. But then a = b and we obtain

√
2 = c/a, contradicting a, c both being

integers. Thus, 0 < sin 2θ < 1 which gives (c/a+ c/b)2 > 8.

Solution 2

Defining θ as in Solution 1, we have c/a + c/b = sec θ + csc θ. By the AM-GM
inequality, we have (sec θ + csc θ)/2 ≥

√
sec θ csc θ. So

c/a+ c/b ≥ 2√
sin θ cos θ

=
2
√
2√

sin 2θ
≥ 2

√
2.

Since a, b, c are integers, we have c/a + c/b > 2
√
2 which gives (c/a+ c/b)2 > 8.

Solution 3

By simplifying and using the AM-GM inequality,

� c

a
+

c

b

�2

= c2

�
a+ b

ab

�2

=
(a2 + b2)(a+ b)2

a2b2
≥ 2

√
a2b2 (2

√
ab)2

a2b2
= 8,

with equality only if a = b. By using the same argument as in Solution 1, a cannot
equal b and the inequality is strict.

Solution 4
� c

a
+

c

b

�2

=
c2

a2
+

c2

b2
+
2c2

ab
= 1 +

b2

a2
+

a2

b2
+ 1 +

2(a2 + b2)

ab

= 2 +

�
a

b
− b

a

�2

+ 2 +
2

ab

�
(a− b)2 + 2ab

�

= 4 +

�
a

b
− b

a

�2

+
2(a − b)2

ab
+ 4 ≥ 8,

with equality only if a = b, which (as argued previously) cannot occur.
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b) Solution 1

Since c/a + c/b is rational, (c/a+ c/b)2 can only be an integer if c/a + c/b is an
integer. Suppose c/a + c/b = m. We may assume that gcd(a, b) = 1. (If not,
divide the common factor from (a, b, c), leaving m unchanged.)

Since c(a+b) = mab and gcd(a, a+b) = 1, amust divide c, say c = ak. This gives
a2 + b2 = a2k2 which implies b2 = (k2 − 1)a2. But then a divides b contradicting
the fact that gcd(a, b) = 1. Therefore (c/a+ c/b)2 is not equal to any integer n.

Solution 2

We begin as in Solution 1, supposing that c/a + c/b = m with gcd(a, b) = 1.
Hence a and b are not both even. It is also the case that a and b are not both
odd, for then c2 = a2 + b2 ≡ 2 (mod 4), and perfect squares are congruent to
either 0 or 1 modulo 4. So one of a, b is odd and the other is even. Therefore
c must be odd.

Now c/a+ c/b = m implies c(a+ b) = mab, which cannot be true because c(a+ b)
is odd and mab is even.
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3. Let S be a set of n ≥ 3 points in the interior of a circle.

a) Show that there are three distinct points a, b, c ∈ S and three distinct points
A,B,C on the circle such that a is (strictly) closer to A than any other point in
S, b is closer to B than any other point in S and c is closer to C than any other
point in S.

b) Show that for no value of n can four such points in S (and corresponding points
on the circle) be guaranteed.

Solution 1

a) Let H be the smallest convex set of points in the plane which contains S.† Take
3 points a, b, c ∈ S which lie on the boundary of H. (There must always be at
least 3 (but not necessarily 4) such points.)

Since a lies on the boundary of the convex region H, we can construct a chord L
such that no two points of H lie on opposite sides of L. Of the two points where
the perpendicular to L at a meets the circle, choose one which is on a side of L
not containing any points of H and call this point A. Certainly A is closer to a
than to any other point on L or on the other side of L. Hence A is closer to a
than to any other point of S. We can find the required points B and C in an
analogous way and the proof is complete.

[Note that this argument still holds if all the points of S lie on a line.]

H

a

b

c
L

A

(a)

P

Q R

a b

c

r

r

√
3

2 r

(b)

b) Let PQR be an equilateral triangle inscribed in the circle and let a, b, c be mid-
points of the three sides of �PQR. If r is the radius of the circle, then every
point on the circle is within (

√
3/2)r of one of a, b or c. (See figure (b) above.)

Now
√
3/2 < 9/10, so if S consists of a, b, c and a cluster of points within r/10 of

the centre of the circle, then we cannot select 4 points from S (and corresponding
points on the circle) having the desired property.

†By the way, H is called the convex hull of S. If the points of S lie on a line, then H will be the shortest
line segment containing the points of S. Otherwise, H is a polygon whose vertices are all elements of S and
such that all other points in S lie inside or on this polygon.
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Solution 2

a) If all the points of S lie on a line L, then choose any 3 of them to be a, b, c. Let
A be a point on the circle which meets the perpendicular to L at a. Clearly A is
closer to a than to any other point on L, and hence closer than other other point
in S. We find B and C in an analogous way.

Otherwise, choose a, b, c from S so that the triangle formed by these points has
maximal area. Construct the altitude from the side bc to the point a and extend
this line until it meets the circle at A. We claim that A is closer to a than to any
other point in S.

Suppose not. Let x be a point in S for which the distance from A to x is less than
the distance from A to a. Then the perpendicular distance from x to the line bc
must be greater than the perpendicular distance from a to the line bc. But then
the triangle formed by the points x, b, c has greater area than the triangle formed
by a, b, c, contradicting the original choice of these 3 points. Therefore A is closer
to a than to any other point in S.

The points B and C are found by constructing similar altitudes through b and c,
respectively.

b) See Solution 1.
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4. Let ABC be a triangle with circumradius R, perimeter P and area K. Determine the
maximum value of KP/R3.

Solution 1

Since similar triangles give the same value of KP/R3, we can fix R = 1 and maximize
KP over all triangles inscribed in the unit circle. Fix points A and B on the unit circle.
The locus of points C with a given perimeter P is an ellipse that meets the circle in at
most four points. The area K is maximized (for a fixed P ) when C is chosen on the
perpendicular bisector of AB, so we get a maximum value for KP if C is where the
perpendicular bisector of AB meets the circle. Thus the maximum value of KP for
a given AB occurs when ABC is an isosceles triangle. Repeating this argument with
BC fixed, we have that the maximum occurs when ABC is an equilateral triangle.

Consider an equilateral triangle with side length a. It has P = 3a. It has height equal
to a

√
3/2 giving K = a2

√
3/4. From the extended law of sines, 2R = a/ sin(60) giving

R = a/
√
3. Therefore the maximum value we seek is

KP/R3 =

�
a2
√
3

4

�
(3a)

�√
3

a

�3

=
27

4
.

Solution 2

From the extended law of sines, the lengths of the sides of the triangle are 2R sinA,
2R sinB and 2R sinC. So

P = 2R(sinA+ sinB + sinC) and K =
1

2
(2R sinA)(2R sinB)(sinC),

giving
KP

R3
= 4 sinA sinB sinC(sinA+ sinB + sinC).

We wish to find the maximum value of this expression over all A + B + C = 180◦.
Using well-known identities for sums and products of sine functions, we can write

KP

R3
= 4 sinA

�
cos(B − C)

2
− cos(B + C)

2

��
sinA+ 2 sin

�
B + C

2

�
cos

�
B − C

2

��
.

If we first consider A to be fixed, then B + C is fixed also and this expression takes
its maximum value when cos(B − C) and cos

�
B−C

2

�
equal 1; i.e. when B = C. In a

similar way, one can show that for any fixed value of B, KP/R3 is maximized when
A = C. Therefore the maximum value of KP/R3 occurs when A = B = C = 60◦,
and it is now an easy task to substitute this into the above expression to obtain the
maximum value of 27/4.
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Solution 3

As in Solution 2, we obtain

KP

R3
= 4 sinA sinB sinC(sinA+ sinB + sinC).

From the AM-GM inequality, we have

sinA sinB sinC ≤
�
sinA+ sinB + sinC

3

�3

,

giving
KP

R3
≤ 4

27
(sinA+ sinB + sinC)4,

with equality when sinA = sinB = sinC. Since the sine function is concave on the
interval from 0 to π, Jensen’s inequality gives

sinA+ sinB + sinC

3
≤ sin

�
A+B + C

3

�
= sin

π

3
=

√
3

2
.

Since equality occurs here when sinA = sinB = sinC also, we can conclude that the

maximum value of KP/R3 is 4
27

�
3
√

3
2

�4

= 27/4.
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5. Let’s say that an ordered triple of positive integers (a, b, c) is n-powerful if a ≤ b ≤ c,
gcd(a, b, c) = 1, and an + bn + cn is divisible by a + b + c. For example, (1, 2, 2) is
5-powerful.

a) Determine all ordered triples (if any) which are n-powerful for all n ≥ 1.
b) Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful,
but not 2007-powerful.

[Note that gcd(a, b, c) is the greatest common divisor of a, b and c.]

Solution 1

Let Tn = an + bn + cn and consider the polynomial

P (x) = (x− a)(x − b)(x − c) = x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x− abc.

Since P (a) = 0, we get a3 = (a+ b+ c)a2 − (ab+ ac+ bc)a+ abc and multiplying both
sides by an−3 we obtain an = (a+ b+ c)an−1− (ab+ac+ bc)an−2+(abc)an−3. Applying
the same reasoning, we can obtain similar expressions for bn and cn and adding the
three identities we get that Tn satisfies the following 3-term recurrence:

Tn = (a+ b+ c)Tn−1 − (ab+ ac+ bc)Tn−2 + (abc)Tn−3, for all n ≥ 3.
From this we see that if Tn−2 and Tn−3 are divisible by a + b + c, then so is Tn. This
immediately resolves part (b)—there are no ordered triples which are 2004-powerful
and 2005-powerful, but not 2007-powerful—and reduces the number of cases to be
considered in part (a): since all triples are 1-powerful, the recurrence implies that any
ordered triple which is both 2-powerful and 3-powerful is n-powerful for all n ≥ 1.
Putting n = 3 in the recurrence, we have

a3 + b3 + c3 = (a+ b+ c)(a2 + b2 + c2)− (ab+ ac+ bc)(a+ b+ c) + 3abc

which implies that (a, b, c) is 3-powerful if and only if 3abc is divisible by a + b + c.
Since

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ ac+ bc),

(a, b, c) is 2-powerful if and only if 2(ab+ ac+ bc) is divisible by a+ b+ c.

Suppose a prime p ≥ 5 divides a+ b+ c. Then p divides abc. Since gcd(a, b, c) = 1, p
divides exactly one of a, b or c; but then p doesn’t divide 2(ab+ ac+ bc).

Suppose 32 divides a+ b+ c. Then 3 divides abc, implying 3 divides exactly one of a,
b or c. But then 3 doesn’t divide 2(ab+ ac+ bc).

Suppose 22 divides a + b + c. Then 4 divides abc. Since gcd(a, b, c) = 1, at most one
of a, b or c is even, implying one of a, b, c is divisible by 4 and the others are odd. But
then ab+ ac+ bc is odd and 4 doesn’t divide 2(ab+ ac+ bc).

So if (a, b, c) is 2- and 3-powerful, then a+ b+ c is not divisible by 4 or 9 or any prime
greater than 3. Since a + b + c is at least 3, a + b + c is either 3 or 6. It is now a
simple matter to check the possibilities and conclude that the only triples which are
n-powerful for all n ≥ 1 are (1, 1, 1) and (1, 1, 4).
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Solution 2

Let p be a prime. By Fermat’s Little Theorem,

ap−1 ≡
�
1 (mod p), if p doesn’t divide a;
0 (mod p), if p divides a.

Since gcd(a, b, c) = 1, we have that ap−1+ bp−1+ cp−1 ≡ 1, 2 or 3 (mod p). Therefore if
p is a prime divisor of ap−1+bp−1+cp−1, then p equals 2 or 3. So if (a, b, c) is n-powerful
for all n ≥ 1, then the only primes which can divide a+ b+ c are 2 or 3.

We can proceed in a similar fashion to show that a+ b+ c is not divisible by 4 or 9.

Since

a2 ≡
�
0 (mod 4), if p is even;
1 (mod 4), if p is odd

and a, b, c aren’t all even, we have that a2 + b2 + c2 ≡ 1, 2 or 3 (mod 4).
By expanding (3k)3, (3k + 1)3 and (3k + 2)3, we find that a3 is congruent to 0, 1 or
−1 modulo 9. Hence

a6 ≡
�
0 (mod 9), if 3 divides a;
1 (mod 9), if 3 doesn’t divide a.

Since a, b, c aren’t all divisible by 3, we have that a6 + b6 + c6 ≡ 1, 2 or 3 (mod 9).
So a2+ b2+ c2 is not divisible by 4 and a6+ b6+ c6 is not divisible by 9. Thus if (a, b, c)
is n-powerful for all n ≥ 1, then a+ b+ c is not divisible by 4 or 9. Therefore a+ b+ c
is either 3 or 6 and checking all possibilities, we conclude that the only triples which
are n-powerful for all n ≥ 1 are (1, 1, 1) and (1, 1, 4).
See Solution 1 for the (b) part.
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GRADER’S REPORT

Each question was worth a maximum of 7 marks. Every solution on every paper was graded
by two different markers. If the two marks differed by more than one point, the solution was
reconsidered until the difference was resolved. If the two marks differed by one point, the
average was used in computing the total score. The top papers were then reconsidered until
the committee was confident that the prize-winning contestants were ranked correctly.

The various marks assigned to each solution are displayed below, as a percentage. As
described above, fractional scores are possible, but for the purpose of this table, marks are
rounded up. So, for example, 54.7% of the students obtained a score of 6.5 or 7 on the first
problem. This indicates that on 54.7% of the papers, at least one marker must have awarded
a 7 on question #1.

Marks #1 #2 #3 #4 #5

0 9.3 4.0 53.3 20.0 48.0
1 6.7 2.7 12.0 16.0 41.3
2 2.7 10.7 12.0 1.3 2.7
3 1.3 22.7 4.0 1.3 2.7
4 4.0 18.7 10.7 6.7 0.0
5 5.3 10.7 2.7 17.3 1.3
6 16.0 10.7 5.3 8.0 1.3
7 54.7 20.0 0.0 29.3 2.7

At the outset our marking philosophy was as follows: A score of 7 was given for a
completely correct solution. A score of 6 indicated a solution which was essentially correct,
but with a very minor error or omission. Very significant progress had to be made to obtain
a score of 3. Even scores of 1 or 2 were not awarded unless some significant work was done.
Scores of 4 and 5 were reserved for special situations. This approach had to be modified
somewhat for the questions with more than one part.

PROBLEM 1

This problem was very well done. Although there were a few slightly different ways to proceed
(some students used induction, for example), every solution essentially involves enumerating
the number of possible ways that the path can get from one row to the next.
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PROBLEM 2

This problem was fairly well done with most students making significant progress on at least
one of the two parts, usually (a). Three marks were awarded for a correct solution to the
(a) part. There were many different ways to proceed here and the four official solutions
provide a representative sample. The most common approach was to use AM-GM in a
manner similar to Solution 3. One mark was deducted if students didn’t show that the
inequality was strict. Four marks were awarded for a correct solution to (b). Again there
are many different ways to proceed, but the students had a more difficult time writing clear
solutions to this part.

PROBLEM 3

This problem proved to be quite difficult and no student obtained a perfect score. Four marks
were awarded for solving (a) and three marks were awarded for (b). About 12 students
managed to solve the (b) part, but only 4 were able to provide a complete proof for (a).
Many students made partial progress on the (a) part only to find that their argument didn’t
cover all possible situations. This was the most challenging question to grade.

PROBLEM 4

This geometry problem was quite well done. About half of the contestants realized that the
maximum value occurred when the triangle was equilateral, but it was necessary to prove
this to obtain full marks. Two students gave geometric arguments similar to Solution 1.
Most students expressed KP/R3 in terms of trig functions (as in Solutions 2, but there were
many variations) and attempted to maximize the expression over all possible angles. There
are many ways to do this, but some care had to be taken. Solutions 2 and 3 show two of the
better approaches.

PROBLEM 5

Few students made significant progress on this challenging problem. Five marks were
awarded for the (a) part and two marks for (b). The four students who attained high
marks on this question all used an approach similar to Solution 1. One mark was given to
students who found a solution by inspection.


