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REPORT AND RESULTS OF THE
2002 CANADIAN MATHEMATICAL OLYMPIAD

The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition
sponsored by the Canadian Mathematical Society (CMS) and is administered by the Canadian
Mathematical Olympiad Committee (CMO Committee), a sub-committee of the Mathematical
Olympiads Committee. The CMO was established in 1969 to provide an opportunity for students
who performed well in various provincial mathematics competitions to compete at a national level.
It also serves as preparation for those Canadian students competing at the International Mathe-
matical Olympiad (IMO).

Students qualify to write the CMO by earning a sufficiently high score on the Canadian Open
Mathematical Challenge (COMC). Students may also be nominated to write the CMO by the
provincial coordinators.

The Society is grateful for support from the Sun Life Financial as the Major Sponsor of the 2002
Canadian Mathematical Olympiad and the other sponsors which include: the Ministry of Education
of Ontario, the Ministry of Education, Quebec, Alberta Learning, the Department of Education
of New Brunswick, the Department of Education of Newfoundland and Labrador, the Department
of Education of the Northwest Territories and the Department of Education of Saskatchewan;
the Department of Mathematics and Statistics, University of New Brunswick at Fredericton, the
Centre for Education in Mathematics and Computing, University of Waterloo, the Department of
Mathematics and Statistics, University of Ottawa, the Department of Mathematics, University of
Toronto, Nelson Thompson Learning and John Wiley and Sons Canada Ltd..

The provincial coordinators of the CMO are John Denton from Dawson College QC, Diane Dowl-
ing from University of Manitoba, Peter Crippin from University of Waterloo ON, Harvey Gerber
from Simon Fraser University BC, Gareth J. Griffith from University of Saskatchewan, Ted Lewis
from University of Alberta, Gordon MacDonald from University of Prince Edward Island, Roman
Mureika from University of New Brunswick, Michael Nutt from Acadia University NS, Thrse Ouellet
from Université de Montréal QC, and Donald Rideout from Memorial University of Newfoundland.

The CMO Subcommittee members and other mathematicians who set and/or marked the 2002
CMO papers were Robert Dawson, Saint Mary’s University; Karl Dilcher, Dalhousie University; J.
P. Grossman, Masschusets Institute of Technology; Richard Hoshino, Dalhousie University; Richard
Lockhart, Simon Fraser University. Richard Nowakowski, Dalhousie University; Michael Nutt,
Acadia University; Dorette Pronk, Dalhousie University; Naoki Sato, Sun Life, Toronto; Tony
Thompson, Dalhousie University; Daryl Tingley, University of New Brunswick; Maureen Tingley,
University of New Brunswick.

I would like to thank Professor Eric Marchand of the University of New Brunswick for the French
translation of the 2002 CMO Examination and Solutions. As well as Caroline Baskerville of the
CMS Executive Office and Linda Guthrie of the Mathematics and Statistics Department, University
of New Brunswick, for a substantial amount of administrative work. Finally I must thank Graham
Wright, the Executive Director of the CMS. It is because of Graham’s devotion to the CMS in
general, and the Society’s educational activities in particular, that the various activities of the
Math Competitons Committee are running so smoothly.

Daryl Tingley, Chair
Mathmatical Competitions Committee



The 34th (2002) Canadian Mathematical Olympiad was held on Wednesday, March 27th, 2002
with 80 competitors from 47 schools in eight Canadian provinces participating. The number of
contestants from each province was as follows:

BC (12) AB (9) MB (2) ON (47) QC (5) NB (2) NS (2) NF (1)

The contest paper consisted of five questions. Each question was worth 7 marks for a total maximum
score of m = 35. The contestants performances were grouped into four divisions as follows.

Division Total Score No. of Students
I 28 ≤ m ≤ 35 10
II 20 ≤ m < 28 12
III 15 ≤ m < 20 17
IV 0 ≤ m < 15 41

PRIZE WINNERS

First prize:
Tianyi Han, Woburn Collegiate Institute,ON
The Sun Life Cup, $2000, and a book prize

Second prize:
Roger Mong, Don Mills Collegiate Institute,ON
$1500 and a book prize

Third prize:
Paul Cheng, West Vancouver Secondary School,BC
$1000 and a book prize

Honourable Mentions:
Robert Barrington Leigh, Old Scona Academy,AB
Olena Bormashenko, Don Mills Collegiate Institute,ON
Xiaoxuan Jin, Vincent Massey Secondary School,ON
Timothy Kusalik, Queen Elizabeth High School,NS
Cornwall Lau, David Thompson Secondary School,BC
Feng Tian, Vincent Massey Secondary School,ON
Yang Yang, Don Mills Collegiate Institute,ON

$500 and a book prize
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SECOND DIVISION
Score: 20 ≤ m < 28

Brian Choi Markville Secondary School,ON
Kevin Chung Earl Haig Secondary School,ON
Shih En Lu Marianopolis College,QC
Sumudu Fernando Harry Ainlay Comp. High School,AB
Alex Fink Queen Elizabeth High School,AB
Ralph Furmaniak Tom Griffiths Home School,ON
Robin Li St. Patrick Secondary School,ON
Henry Pan East York Collegiate Institute,ON
Louis Francois Preville Ratel College de l’Assomption,QC
Yin Ren Vincent Massey Secondary School,ON
Jacob Tsimerman Univ. of Toronto School,ON

THIRD DIVISION
Score: 15 ≤ m < 20

Maximilian Butler Tom Griffiths Home School,ON
Aaron Chan J.N. Burnett Secondary School,BC
Peter Du Sir Winston Churchill High School,AB
Fan Feng Vincent Massey Secondary School,ON
Ryan Holm St. Ignatius High School,ON
Liang Hong Univ. of Toronto Schools,ON
Oleg Ivrii Don Mills Collegiate Institute,ON
Jenny Yue Jin Earl Haig Secondary School,ON
Keigo Kawaji Earl Haig Secondary School,ON
Songhao Li L’Amoureaux Collegiate Institute,ON
Yichaun Liu University Hill Secondary School,BC
Andrew Mao Tom Griffiths Home School,ON
Mathieu Guay Paquet Secondaire Antoine Brossard,QC
Alex Shyr VSB/UBC Transition Program,BC
Sarah Sun St. Mary’s School,AB
Lin Ray Wung Pinetree Secondary School,BC
David (Xin) Zhang Woburn Collegiate Institute,ON

FOURTH DIVISION
Score: 0 ≤ m < 15

Robert Biswas Vincent Massey Secondary School,ON
Tiffany Chao Sir Winston Churchill Secondary,BC
Valerie Cheung Vincent Massey Secondary School,ON
Leonid Chindelevitch Marianopolis College,QC
Kevin Choi Crescent School,ON
Keith Chung Western Canada High School,AB
Mark Daniels Comm. Hebrew Academy of Toronto,ON
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Rowan Dorin St. John’s-Ravenscourt School,MB
Jerome Grand Maison CEGEP de la Gaspesie,QC
Michael Hirsch St. John’s-Ravenscourt School,MB
Jason Hornosty Fredericton High School,NB
Marina Hu Burnaby South Secondary School,BC
Pawel Kosicki Vincent Massey Secondary School,ON
Janos Kramar Univ. of Toronto Schools,ON
Hyon Lee Vincent Massey Secondary School,ON
Vincent Leung Upper Canada College,ON
Charles Li Western Canada High School,AB
Angela Lin Sir Winston Churchill Secondary,BC
Mike Liu Waterloo Collegiate Institute,ON
Micah McCurdy Saint Patrick’s High School,NS
Marcin Mika Father Michael Goetz Secondary,ON
Alec Mills Western Canada High School,AB
Amit Mukerji Vincent Massey Secondary School,ON
Jiafei Niu Waterloo Collegiate Institute,ON
Avery Owen Don Mills Collegiate Institute,ON
Sharon Shao Eric Hamber Secondary School,BC
Yihao Shen Saint John High School,NB
Christopher Tam Upper Canada College,ON
Alvin Tan McNally Comp. High School,AB
Leonid Tchourakov Grand River Collegiate,ON
Samuel Wong University Hill Secondary School,BC
Nithum Thain Prince of Wales Collegiate,NF
Wei Lung Tseng Yale Secondary School,BC
Yves Wang Northern Secondary School,ON
Chris Woo Crescent School,ON
Kevin Yip Don Mills Collegiate Institute,ON
Dongbo Yu Don Mills Collegiate Institute,ON
Matei Zaharia Jarvis Collegiate Institute,ON
Dapeng Zhao Vincent Massey Secondary School,ON
Yin Zhao Vincent Massey Secondary School,ON
Anjie Zhou Westdale Secondary School,ON
Zhongying Zhou Vincent Massey,ON
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THE THIRTY FOURTH

CANADIAN MATHEMATICAL OLYMPIAD

2002

1. Let S be a subset of {1, 2, . . . , 9}, such that the sums formed by adding each unordered pair of
distinct numbers from S are all different. For example, the subset {1, 2, 3, 5} has this property,
but {1, 2, 3, 4, 5} does not, since the pairs {1, 4} and {2, 3} have the same sum, namely 5.

What is the maximum number of elements that S can contain?

2. Call a positive integer n practical if every positive integer less than or equal to n can be
written as the sum of distinct divisors of n.

For example, the divisors of 6 are 1, 2, 3, and 6 . Since
1=1, 2=2, 3=3, 4=1+3, 5=2+ 3, 6=6,

we see that 6 is practical.

Prove that the product of two practical numbers is also practical.

3. Prove that for all positive real numbers a, b, and c,

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality occurs.

4. Let Γ be a circle with radius r. Let A and B be distinct points on Γ such that AB <
√
3r.

Let the circle with centre B and radius AB meet Γ again at C. Let P be the point inside Γ
such that triangle ABP is equilateral. Finally, let the line CP meet Γ again at Q.

Prove that PQ = r.

5. Let N = {0, 1, 2, . . .}. Determine all functions f : N → N such that

xf(y) + yf(x) = (x + y)f(x2 + y2)

for all x and y in N.
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1. Let S be a subset of {1, 2, . . . , 9}, such that the sums formed by adding each unordered pair of
distinct numbers from S are all different. For example, the subset {1, 2, 3, 5} has this property,
but {1, 2, 3, 4, 5} does not, since the pairs {1, 4} and {2, 3} have the same sum, namely 5.

What is the maximum number of elements that S can contain?

Solution 1
It can be checked that all the sums of pairs for the set {1, 2, 3, 5, 8} are different.

Suppose, for a contradiction, that S is a subset of {1, . . . , 9} containing 6 elements such that
all the sums of pairs are different. Now the smallest possible sum for two numbers from S is
1 + 2 = 3 and the largest possible sum is 8 + 9 = 17. That gives 15 possible sums: 3, . . . , 17.

Also there are
(

6
2

)
= 15 pairs from S. Thus, each of 3, . . . , 17 is the sum of exactly one

pair. The only pair from {1, . . . , 9} that adds to 3 is {1, 2} and to 17 is {8, 9}. Thus 1, 2, 8, 9
are in S. But then 1+9 = 2+8, giving a contradiction. It follows that the maximum number
of elements that S can contain is 5.

Solution 2.

It can be checked that all the sums of pairs for the set {1, 2, 3, 5, 8} are different.

Suppose, for a contradiction, that S is a subset of {1, . . . 9} such that all the sums of pairs
are different and that a1 < a2 < . . . < a6 are the members of S.

Since a1 + a6 �= a2 + a5, it follows that a6 − a5 �= a2 − a1. Similarly a6 − a5 �= a4 − a3 and
a4 − a3 �= a2 − a1. These three differences must be distinct positive integers, so,

(a6 − a5) + (a4 − a3) + (a2 − a1) ≥ 1 + 2 + 3 = 6 .

Similarly a3 − a2 �= a5 − a4, so

(a3 − a2) + (a5 − a4) ≥ 1 + 2 = 3 .

Adding the above 2 inequalities yields

a6 − a5 + a5 − a4 + a4 − a3 + a3 − a2 + a2 − a1 ≥ 6 + 3 = 9 ,

and hence a6 − a1 ≥ 9. This is impossible since the numbers in S are between 1 and 9.
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2. Call a positive integer n practical if every positive integer less than or equal to n can be
written as the sum of distinct divisors of n.

For example, the divisors of 6 are 1, 2, 3, and 6 . Since
1=1, 2=2, 3=3, 4=1+3, 5=2+ 3, 6=6,

we see that 6 is practical.

Prove that the product of two practical numbers is also practical.

Solution
Let p and q be practical. For any k ≤ pq, we can write

k = aq + b with 0 ≤ a ≤ p, 0 ≤ b < q.

Since p and q are practical, we can write

a = c1 + . . . + cm, b = d1 + . . . + dn

where the ci’s are distinct divisors of p and the dj ’s are distinct divisors of q. Now

k = (c1 + . . . + cm)q + (d1 + . . . + dn)
= c1q + . . . + cmq + d1 + . . . + dn.

Each of ciq and dj divides pq. Since dj < q ≤ ciq for any i, j, the ciq’s and dj ’s are all distinct,
and we conclude that pq is practical.
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3. Prove that for all positive real numbers a, b, and c,

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality occurs.

Each of the inequalities used in the solutions below has the property that equality holds if
and only if a = b = c. Thus equality holds for the given inequality if and only if a = b = c.

Solution 1.

Note that a4 + b4 + c4 =
(a4 + b4)

2
+

(b4 + c4)
2

+
(c4 + a4)

2
. Applying the arithmetic-geometric

mean inequality to each term, we see that the right side is greater than or equal to

a2b2 + b2c2 + c2a2.

We can rewrite this as

a2(b2 + c2)
2

+
b2(c2 + a2)

2
+

c2(a2 + b2)
2

.

Applying the arithmetic mean-geometric mean inequality again we obtain a4 + b4 + c4 ≥
a2bc + b2ca + c2ab. Dividing both sides by abc (which is positive) the result follows.

Solution 2.

Notice the inequality is homogeneous. That is, if a, b, c are replaced by ka, kb, kc, k > 0 we
get the original inequality. Thus we can assume, without loss of generality, that abc = 1.
Then

a3

bc
+

b3

ca
+

c3

ab
= abc

(
a3

bc
+

b3

ca
+

c3

ab

)

= a4 + b4 + c4.

So we need prove that a4 + b4 + c4 ≥ a + b + c.

By the Power Mean Inequality,

a4 + b4 + c4

3
≥

(
a + b + c

3

)4

,

so a4 + b4 + c4 ≥ (a + b + c) · (a + b + c)3

27
.

By the arithmetic mean-geometric mean inequality,
a + b + c

3
≥ 3

√
abc = 1, so a + b + c ≥ 3.

Hence, a4 + b4 + c4 ≥ (a + b + c) · (a + b + c)3

27
≥ (a + b + c)

33

27
= a + b + c.

Solution 3.

Rather than using the Power-Mean inequality to prove a4 + b4 + c4 ≥ a + b + c in Proof 2,
the Cauchy-Schwartz-Bunjakovsky inequality can be used twice:

(a4 + b4 + c4)(12 + 12 + 12) ≥ (a2 + b2 + c2)2

(a2 + b2 + c2)(12 + 12 + 12) ≥ (a + b + c)2

So
a4 + b4 + c4

3
≥ (a2 + b2 + c2)2

9
≥ (a + b + c)4

81
. Continue as in Proof 2.
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4. Let Γ be a circle with radius r. Let A and B be distinct points on Γ such that AB <
√
3r.

Let the circle with centre B and radius AB meet Γ again at C. Let P be the point inside
Γ such that triangle ABP is equilateral. Finally, let CP meet Γ again at Q. Prove that
PQ = r.

B

C

O

A

PQ

Γ

Solution 1.

Let the center of Γ be O, the radius r. Since BP = BC, let θ = �BPC = �BCP .

Quadrilateral QABC is cyclic, so �BAQ = 180◦ − θ and hence �PAQ = 120◦ − θ.

Also �APQ = 180◦ − �APB − �BPC = 120◦ − θ, so PQ = AQ and �AQP = 2θ − 60◦.

Again because quadrilateral QABC is cyclic, �ABC = 180◦ − �AQC = 240◦ − 2θ .

Triangles OAB and OCB are congruent, since OA = OB = OC = r and AB = BC.

Thus �ABO = �CBO =
1
2

�ABC = 120◦ − θ.

We have now shown that in triangles AQP and AOB, �PAQ = �BAO = �APQ = �ABO.
Also AP = AB, so 
AQP ∼= 
AOB. Hence QP = OB = r.

Solution 2.

Let the center of Γ be O, the radius r. Since A, P and C lie on a circle centered at B,
60◦ = �ABP = 2�ACP , so �ACP = �ACQ = 30◦.

Since Q, A, and C lie on Γ, �QOA = 2�QCA = 60◦.

So QA = r since if a chord of a circle subtends an angle of 60◦ at the center, its length is the
radius of the circle.

Now BP = BC, so �BPC = �BCP = �ACB + 30◦.

Thus �APQ = 180◦ − �APB − �BPC = 90◦ − �ACB.

Since Q, A, B and C lie on Γ and AB = BC, �AQP = �AQC = �AQB+�BQC = 2�ACB.
Finally, �QAP = 180 − �AQP − �APQ = 90 − �ACB.

So �PAQ = �APQ hence PQ = AQ = r.
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5. Let N = {0, 1, 2, . . .}. Determine all functions f : N → N such that

xf(y) + yf(x) = (x + y)f(x2 + y2)

for all x and y in N.

Solution 1.

We claim that f is a constant function. Suppose, for a contradiction, that there exist x and
y with f(x) < f(y); choose x, y such that f(y) − f(x) > 0 is minimal. Then

f(x) =
xf(x) + yf(x)

x + y
<

xf(y) + yf(x)
x + y

<
xf(y) + yf(y)

x + y
= f(y)

so f(x) < f(x2 + y2) < f(y) and 0 < f(x2 + y2) − f(x) < f(y) − f(x), contradicting the
choice of x and y. Thus, f is a constant function. Since f(0) is in N, the constant must be
from N.

Also, for any c in N, xc + yc = (x + y)c for all x and y, so f(x) = c, c ∈ N are the solutions
to the equation.

Solution 2.

We claim f is a constant function. Define g(x) = f(x) − f(0). Then g(0) = 0, g(x) ≥ −f(0)
and

xg(y) + yg(x) = (x + y)g(x2 + y2)

for all x, y in N.

Letting y = 0 shows g(x2) = 0 (in particular, g(1) = g(4) = 0), and letting x = y = 1 shows
g(2) = 0. Also, if x, y and z in N satisfy x2 + y2 = z2, then

g(y) = −y

x
g(x). (∗)

Letting x = 4 and y = 3, (∗) shows that g(3) = 0.

For any even number x = 2n > 4, let y = n2 − 1. Then y > x and x2 + y2 = (n2 + 1)2. For
any odd number x = 2n+1 > 3, let y = 2(n+1)n. Then y > x and x2+y2 = ((n+1)2+n2)2.
Thus for every x > 4 there is y > x such that (∗) is satisfied.
Suppose for a contradiction, that there is x > 4 with g(x) > 0. Then we can construct a
sequence x = x0 < x1 < x2 < . . . where g(xi+1) = −xi+1

xi
g(xi). It follows that |g(xi+1)| >

|g(xi)| and the signs of g(xi) alternate. Since g(x) is always an integer, |g(xi+1)| ≥ |g(xi)|+1.
Thus for some sufficiently large value of i, g(xi) < −f(0), a contradiction.

As for Proof 1, we now conclude that the functions that satisfy the given functional equation
are f(x) = c, c ∈ N.

Solution 3. Suppose that W is the set of nonnegative integers and that f : W → W satisfies:

xf(y) + yf(x) = (x + y)f(x2 + y2). (∗)

We will show that f is a constant function.

Let f(0) = k, and set S = {x | f(x) = k}.
Letting y = 0 in (∗) shows that f(x2) = k ∀ x > 0, and so

x2 ∈ S ∀ x > 0 (1)
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In particular, 1 ∈ S.

Suppose x2 + y2 = z2. Then yf(x) + xf(y) = (x + y)f(z2) = (x + y)k. Thus,

x ∈ S iff y ∈ S. (2)

whenever x2 + y2 is a perfect square.

For a contradiction, let n be the smallest non-negative integer such that f(2n) �= k. By (l) n

must be odd, so
n − 1
2

is an integer. Now
n − 1
2

< n so f(2
n−1

2 ) = k. Letting x = y = 2
n−1

2

in (∗) shows f(2n) = k, a contradiction. Thus every power of 2 is an element of S.

For each integer n ≥ 2 define p(n) to be the largest prime such that p(n) | n.

Claim: For any integer n > 1 that is not a power of 2, there exists a sequence of integers
x1, x2, . . . , xr such that the following conditions hold:

a) x1 = n.

b) x2
i + x2

i+1 is a perfect square for each i = 1, 2, 3, . . . , r − 1.

c) p(x1) ≥ p(x2) ≥ . . . ≥ p(xr) = 2.

Proof: Since n is not a power of 2, p(n) = p(x1) ≥ 3. Let p(x1) = 2m + 1, so n = x1 =
b(2m + 1)a, for some a and b, where p(b) < 2m + 1.

Case 1: a = 1. Since (2m+1, 2m2+2m, 2m2+2m+1) is a Pythagorean Triple, if x2 = b(2m2+
2m), then x2

1 + x2
2 = b2(2m2 + 2m + 1)2 is a perfect square. Furthermore, x2 = 2bm(m + 1),

and so p(x2) < 2m + 1 = p(x1).

Case 2: a > 1. If n = x1 = (2m + 1)a · b, let x2 = (2m + 1)a−1 · b · (2m2 + 2m), x3 =
(2m+1)a−2 · b · (2m2 +2m)2, . . ., xa+1 = (2m+1)0 · b · (2m2 +2m)a = b · 2ama(m+1)a. Note
that for 1 ≤ i ≤ a, x2

i +x2
i+1 is a perfect square and also note that p(xa+1) < 2m+1 = p(x1).

If xa+1 is not a power of 2, we extend the sequence xi using the same procedure described
above. We keep doing this until p(xr) = 2, for some integer r.

By (2), xi ∈ S iff xi+1 ∈ S for i = 1, 2, 3, . . . , r − 1. Thus, n = x1 ∈ S iff xr ∈ S. But xr is
a power of 2 because p(xr) = 2, and we earlier proved that powers of 2 are in S. Therefore,
n ∈ S , proving the claim.

We have proven that every integer n ≥ 1 is an element of S, and so we have proven that
f(n) = k = f(0), for each n ≥ 1. Therefore, f is constant, Q.E.D.
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GRADERS’ REPORT

Each question was worth a maximum of 7 marks. Every solution on every paper was graded by two
different markers. If the two marks differed by more than one point, the solution was reconsidered
until the difference was resolved. If the two marks differed by one point, the average was used
in computing the total score. The top papers were then reconsidered until the committee was
confident that the prize winning contestants were ranked correctly.

The various marks assigned to each solution are displayed below, as a percentage.

MARKS #1 #2 #3 #4 #5

0 1.2 28.1 31.9 51.9 37.5
1 2.5 10.6 11.9 13.8 24.4
2 10.6 12.5 10.0 3.1 13.8
3 6.9 12.5 1.9 3.1 11.9
4 12.5 6.2 0.0 0.6 5.0
5 8.1 3.1 1.9 0.6 0.0
6 6.9 3.1 9.4 0.6 1.9
7 51.2 23.8 33.1 26.2 5.6

PROBLEM 1

Two points were awarded for an example of a set S with 5 elements. Most students realized that
they should then assume that S contained 6 elements and derive a contradiction.

Contestants who listed all mutually exclusive pairs of numbers (eg S cannot contain both the sets
{1, 3} and {8, 9}) wasted a lot of time, with little or no progress.

Successful contestants realized that they must concentrate on possible differences between elements
of the set. Unfortunately, several made unnecessary assumptions along these lines: “Place 1 in
the set S. If S contains a1, . . . , ak, then add ak+1 so that the difference ak+1 − ak is as small as
possible”, without any justification that such an approach would find the largest possible set S.

These mistakes aside, there were many well-written solutions. Proof 1 of the Official Solutions was
most common. Students who used a proof like Proof 2 wrote very nice solutions. Another successful
approach was to derive restrictions on possible values of differences between adjacent numbers in
the ordered set S. Several of these proofs lost points for poor explanation.

PROBLEM 2

The only solution to this problem found by either the contestants or the committee is that of the
Official solutions. Referring to the Official Solutions, the key to the problem is to write k = ap+ b
with 0 ≤ a ≤ p and 0 ≤ b < q. Almost all contestants who thought of this went on to correctly
solve the problem.

Many contestants considered the cases 0 < k ≤ p, p < k ≤ 2p, 2p < k ≤ 3p, · · ·. Although this is in
effect using k = ap + b, contestants who proceeded in this fashion usually failed to show that the
sum consisted of distinct factors, so were awarded 2 or 3 points.

One point was awarded to contestants who noticed something interesting about practical numbers,
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such as practical numbers (other than 1) must be even, or powers of 2 are practical.

PROBLEM 3

This problem can be done in a multitude of ways, as evidenced by the fact that over ten different
correct solutions were presented. Most of the correct solutions used some variation of the AM-GM
inequality or the Cauchy-Schwartz inequality. However, the problem can be solved without knowing
these tools; one can do some clever algebraic manipulations to produce the correct result. Students
received 1 or 2 points for some non-trivial work with the inequalities, and could receive further
partial credit if their work was leading to a solution.

PROBLEM 4

Many distinct solutions were submitted, but all correct solutions used classical geometry and/or
trigonometry. No contestants were successful in using coordinates, and no contestants attempted a
transformation based approach. One point was awarded for finding a non-trivial relation between
angles or for the special case AD = r. Two points were awarded for finding QA = QP . Three
points were awarded for finding that ∠QOA = 60◦. Contestants did not receive more than three
points unless they made substantial progress towards a solution.

PROBLEM 5

Few students made significant progress on this extremely challenging problem. The correct answer
is that f(x) equals some constant c, for all non-negative integers x. Students received one point
for verifying that f(x) = c is a solution. Some students were able to verify the result when x is a
perfect square or when x is a power of 2, for which they received a further point. Only six students
attained a mark of 6 or 7 for this problem: four of these solutions were very similar to the first
Official Solution, and the others were a combination of the second and third Official Solutions.
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