Search
next up previous
Next: Gorodon Slade - To Up: I)  Probability Methods and Applications Previous: Mary Beth Ruskai -

Yvan Saint-Aubin - Boundary states for a free boson defined on finite geometries



YVAN SAINT-AUBIN, Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec  H3C 3H7
Boundary states for a free boson defined on finite geometries


Langlands recently constructed the map $\varphi\rightarrow \vert
x(\varphi)\rangle$ that factorizes the partition function of a free boson on a cylinder with boundary condition given by two arbitrary functions $\varphi_{B_1}$ and $\varphi_{B_2}$ in the form $\langle
x(\varphi_{B_2})\vert q^{L_0+\bar L_0}\vert x(\varphi_{B_1}) \rangle$. We rewrite $\vert x(\varphi)\rangle$ in a compact form, getting rid of technical assumptions necessary in his construction. This simpler form allows us to explore the properties of the map $\varphi\rightarrow \vert
x(\varphi)\rangle$ under conformal transformation that preserve the boundary. (Joint work with Marc-André Lewis.)