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Enriched model categories and the Dold-Kan correspondence

If we start with a model category enriched in simplicial abelian groups and we normalize each hom complex, what kind of
structure do we obtain? In joint work with Arnaud Ngopnang Ngompé, we show that changing the enrichment along (the
right adjoint of) a weak monoidal Quillen pair results in a "weak" enriched model category. The main issue is that we lose the
tensoring and cotensoring, but we retain a weak form thereof.
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Mapping class groups of exotic tori

The d-dimensional torus is a topological manifold that often admits many smooth structures. How does its mapping class
group (isotopy classes of diffeomorphisms) depend on the smooth structure? I will explain a partial answer to this question
that appears in joint work with Bustamante, Krannich, and Tshishiku, give some geometric applications, and state some open
problems.
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Number theory and stable homotopy groups of spheres

This will be a short survey talk. I will sketch the basic ideas and techniques for computing stable homotopy groups of spheres,
and other finite CW-complexes, by means of the group cohomology of Morava stabilizer groups, i.e., the automorphism groups
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of one-dimensional formal group laws. Then I will review the cases in which such computations result in a formula which
describes the orders of some part (given by a Bousfield localization) of the stable homotopy groups of some finite CW-complex,
in terms of number-theoretic data: special values of an L-function, e.g. the Riemann zeta-function. This gives a compact
and digestible way to describe the orders of various periodic families in the stable homotopy groups of finite CW-complexes,
especially spheres.
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