Recent progress in convex and discrete geometry Progrès récents en géométrie convexe et discrète

(Org: **Ferenc Fodor** (University of Szeged, Hungary and University of Calgary, Canada) and/et **Alina Stancu** (Concordia University, Canada))

GERGELY AMBRUS, University of Szeged, Hungary
KAROLY BEZDEK, University of Calgary
TED BISZTRICZKY, University Calgary
DMITRY FAIFMAN, University of Montreal
PAVLOS KALANTZOPOULOS, University of Waterloo
DYLAN LANGHARST, Carnegie Mellon University Grünbaum's inequality for probability measures
Given a convex body K in \mathbb{R}^n , a natural question is: if one partitions the body into two pieces along its barycenter, how small can each piece be? By "partition along its barycenter", we mean intersecting K with a half-space whose boundary
is a hyperplane containing said barycenter. Grünbaum showed that the volume of each piece is at least $\left(\frac{n}{n+1}\right)^n$ times the total volume of K. Furthermore, this constant is sharp: there is equality if and only if K is a cone, which means there exists a $(n-1)$ -dimensional convex body L and a vector b , such that K has face L and vertex b (i.e. K is the convex hull of b and L).
In this work, which is joint with M. Fradelizi, J. Liu, F. Marin Sola, and S. Tang, we are interested in generalizing Grünbaum's inequality to other measures. Our main results are a sharp inequality for the Gaussian measure and a sharp inequality for s-concave probability measures. The characterization of the equality case is of particular interest. Along the way, we discover new facts about the equality case of the Borell-Brascamp-Lieb inequality.
SERGII MYROSHNYCHENKO, University of the Fraser Valley

LAM NGUYEN, Memorial University of Newfoundland

DEBORAH OLIVEROS, UNAM Queretaro, Mexico

DMITRY RYABOGIN, Kent State University

EGON SCHULTE, Northeastern University

CARSTEN SCHÜTT, University of Kiel, Germany

KATERYNA TATARKO, University of Waterloo

VIKTOR VIGH, University of Szeged, Hungary

BEATRICE-HELEN VRITSIOU, University of Alberta

ELISABETH WERNER, Case Western Reserve University

JIE XIAO, Memorial University

 C^1 -maximizer of p-mean torsion rigidity on convex bodies

Given a bounded domain $B \subset \mathbb{R}^{n \geq 2}$ with its boundary ∂B , a solution u_B of the torsion problem

$$\begin{cases} \Delta u_B = -1 & \text{in } B; \\ u_B = 0 & \text{on } \partial B, \end{cases}$$

is called a stress function of B. Via the torsion rigidity

$$\int_{B} |\nabla u_B(x)|^2 dx,$$

this talk is about to show that the maximization problem for $[1,\infty)\ni p$ -mean torsion rigidity

$$(\star) \quad \sup_{\text{all convex bodies } B \,\subset\, \mathbb{R}^n} \int_B \left(\frac{|\nabla u_B(x)|^2}{|B|^{\frac{2}{n}}} \right)^p \frac{dx}{|B|},$$

is achievable and the boundary ∂B_{\bullet} of any maximizer B_{\bullet} of (\star) is C^1 -smooth, thereby finding that if $|\nabla u_{B_{\bullet}}|$ is constant on ∂B_{\bullet} then B_{\bullet} is a Euclidean ball.

BARTLOMIEJ ZAWALSKI, Case Western Reserve University