JIE XIAO, Memorial University

 C^1 -maximizer of p-mean torsion rigidity on convex bodies

Given a bounded domain $B\subset\mathbb{R}^{n\geq 2}$ with its boundary ∂B , a solution u_B of the torsion problem

$$\begin{cases} \Delta u_B = -1 & \text{in } B; \\ u_B = 0 & \text{on } \partial B, \end{cases}$$

is called a stress function of B. Via the torsion rigidity

$$\int_{B} |\nabla u_B(x)|^2 dx,$$

this talk is about to show that the maximization problem for $[1,\infty)\ni p$ -mean torsion rigidity

$$(\star) \quad \sup_{\text{all convex bodies } B \, \subset \, \mathbb{R}^n} \int_B \left(\frac{|\nabla u_B(x)|^2}{|B|^{\frac{2}{n}}} \right)^p \frac{dx}{|B|},$$

is achievable and the boundary ∂B_{\bullet} of any maximizer B_{\bullet} of (\star) is C^1 -smooth, thereby finding that if $|\nabla u_{B_{\bullet}}|$ is constant on ∂B_{\bullet} then B_{\bullet} is a Euclidean ball.