Number Theory by Early Career Researchers Théorie des nombres par des chercheurs en début de carrière (Org: Jérémy Champagne, AJ Fong and/et Zhenchao Ge (University of Waterloo))

ALI ALSETRI, University of Kentucky
FÉLIX BARIL BOUDREAU, CICMA & Université du Luxembourg
HYMN CHAN, University of Toronto
JOSE CRUZ, University of Calgary
NIC FELLINI, Queen's University
KEIRA GUNN, Mt Royal University
FATEMEH JALALVAND, University of Calgary
NICOL LEONG, University of Lethbridge
ISABELLA NEGRINI University of Toronto

ISABELLA NEGRINI, University of Toronto Rigid Cocycles and the p-adic Kudla Program

Rigid cocycles, introduced by Darmon and Vonk in 2017, offer a promising framework to extend complex multiplication theory to real quadratic fields, suggesting a theory of "real multiplication." They exhibit striking parallels with modular forms and are central to the emerging p-adic Kudla program. While the classical Kudla program studies the theta correspondence between automorphic forms on different groups, the p-adic version appears to replace automorphic forms with rigid cocycles. Although a theory for a p-adic theta correspondence has yet to be developed, recent results suggest its existence. In this talk, I present some of these p-adic results, draw comparisons to the classical setting, and discuss the evidence for an underlying p-adic theta correspondence.

EMILY QUESADA-HERRERA	, University of Lethbridge
FATEME SAJADI, University of	f Toronto

GIAN CORDANA SANJAYA, University of Waterloo

KYLE YIP, Georgia Institute of Technology Diophantine tuples and Diophantine powersets

Let k,n be integers with $k \geq 2$ and $n \neq 0$. A set A of positive integers is a Diophantine tuple with property $D_k(n)$ if the product of ab+n is a perfect k-th power for every $a,b \in A$ with $a \neq b$. These Diophantine tuples have been studied extensively. In this talk, I will discuss some recent progress on "Diophantine powersets" (first studied by Gyarmati, Sárközy, and Stewart), where we allow ab+n to be a perfect power instead of a perfect k-th power for some fixed k. Joint work with Ernie Croot.

XIAO ZHONG, University of Waterloo