KIANOOSH SHOKRI, University of Ottawa

A recursive construction of strength-4 covering arrays using an ovoid in PG(3,q)

A strength-t covering array $\mathrm{CA}(N;t,k,v)$, is an $N\times k$ array over a v-set such that in any t-set of columns, each t-tuple occurs at least once in a row. We employ an ovoid (maximum-sized k-cap with $k=q^2+1$) in PG(3,q) and its plane sections, called Möbius planes, to build new strength-4 covering arrays. For odd q, we identify three truncated Möbius planes such that for any choice of circles from each plane, their intersection size is at most three. From this, we construct a strength-4 covering array $\mathrm{CA}(3q^4-2;4,\frac{q^2+1}{2},q)$. By extending one of these truncated Möbius planes to a full one and applying a recursive construction, we further obtain a $\mathrm{CA}(3q^4+(q-2)(2q^3-q);4,q^2+1,q)$. For $q\geq 11$, these covering arrays improve the size of the best-known covering arrays with the same parameters.

This is joint work with Lucia Moura and Brett Stevens.