ANDREA BURGESS, University of New Brunswick Saint John *Cyclic circular external difference families*

A $(v,m,\ell,1)$ -Circular External Difference Family (CEDF) is an m-sequence (A_1,\ldots,A_m) of ℓ -subsets of an additive group G of order v such that the multiset of all differences a-a', with $(a,a')\in A_{i+1\pmod m}\times A_i$ for some $i\in\mathbb{Z}_m$, is equal to $G\setminus\{0\}$. When $G=\mathbb{Z}_v$, we speak of a cyclic CEDF. CEDFs are a variation of External Difference Families, and have been recently introduced as a tool to construct non-malleable threshold schemes.

Necessarily, if a $(v,m,\ell,1)$ -CEDF exists, then $v=m\ell^2+1$. It is known that an $(m\ell^2+1,m,\ell,1)$ -CEDF over the cyclic group exists whenever the number of subsets m is even, while there cannot exist a cyclic CEDF for m and ℓ both odd. In this talk, we consider the existence of cyclic CEDFs in the case that m is odd and ℓ is even. In particular, we construct a cyclic $(m\ell^2+1,m,\ell,1)$ -CEDF for any odd m>1 when $\ell=2$, and for any even $\ell\geq 2$ when m=3.

This is joint work with Francesca Merola and Tommaso Traetta.