MATT CARTIER, University of Pittsburgh

Computing the Invariant β for Certain Schubert Subvarieties

This talk concerns an invariant $\beta_Y(L)$ attached to a triple (X,Y,L), where X is an irreducible projective variety, $Y\subset X$ is a proper subscheme, and L is a big or ample line bundle on X. This invariant has arisen independently in several works, where it has been used to obtain new results in Diophantine geometry and mathematical physics. We will focus on the case where $X=\mathbb{G}(k,n), \ L=O_X(1)$, and $Y\subset X$ a Schubert subvariety. We develop a method which, under suitable hypotheses, allows us to compute $\beta_Y(L)$ for any such Schubert subvariety Y. As a final result, using a different argument, we obtain a concise explicit formula for $\beta_Y(L)$ when Y is a special type of Schubert subvariety that we call a maximal rectangle Schubert subvariety (MR Schubert subvariety).