Analytic-Geometric Synergies: Harmonic Analysis and Convexity Synergies analytiques et géométriques : analyse harmonique et convexité

(Org: Almaz Butaev (University of the Fraser Valley), Galia Dafni (Concordia University) and/et Serhii Myroshnychenko (University of the Fraser Valley))

(University of the Fraser Valley))
ALMUT BURCHARD, University of Toronto
BLAIR DAVEY, Montana State University
DMITRY FAIFMAN, Université de Montréal
FODOR FERENC, University of Szeged
RYAN GIBARA, Cape Breton University
PAUL HAGELSTEIN, Baylor University Current developments in the theory of differentiation of integrals
We will provide an overview of current developments in the theory of differentiation of integrals. Particular emphasis will be placed on a recent result, extending prior work of Bateman and Katz, that provides a condition on directional maximal operators on \mathbb{R}^2 sufficient to ensure that they are unbounded on $L^p(\mathbb{R}^2)$ for $1 \leq p < \infty$. This recent work is joint with Blanca Radillo-Murguia and Alex Stokolos.
ALEX IOSEVICH, University of Rochester
DMITRY JACOBSON, McGill Extremal metrics on graphs
We review several old and new results about extremal metrics for various graph functionals.

PAVLOS KALANTZOPOULOS, Waterloo University

LIANGBING LUO, York University
MARCU-ANTONE ORSONI, Université Laval
ANDRIY PRYMAK, University of Manitoba
SCOTT RODNEY, Cape Breton University
YANA TEPLITSKAYA, Paris-Saclay University About maximal distance minimizers. Regularity and explicit examples
Consider a compact set $M \subset \mathbb{R}^d$ and $l>0$. A maximal distance minimizer problem is to find a connected compact set Σ of the length (that is, one-dimensional Hausdorff measure \mathcal{H}^1) at most l that minimizes
$\max_{y \in M} dist(y, \Sigma),$
where $dist$ stands for the Euclidean distance. In this talk, I will survey known results on maximal distance minimizers, including explicit examples (such as a circle, a rectangle, and a minimizer with an infinite number of corner points), as well as the regularity of their local structure (a finite number of branching points in the plane and at most three tangent rays at any point of a minimizer in any dimension). I will also discuss several open problems in this area.
DENIS VINOKUROV, Université de Montréal
ELISABETH WERNER, Case Western Reserve University