JOHN BYRNE, University of Delaware

Nonabelian Sidon sets and extremal problems on digraphs

An S_k -set is a subset of a group whose k-tuples have distinct products. We give explicit constructions of large S_k -sets in the groups $\operatorname{Sym}(n)$ and $\operatorname{Alt}(n)$ and of large S_2 -sets in $\operatorname{Sym}(n) \times \operatorname{Sym}(n)$ and $\operatorname{Alt}(n) \times \operatorname{Alt}(n)$, as well as some probabilistic constructions for 'nice' groups. We show that if k is even and Γ has a normal abelian subgroup with bounded index then any S_k -set has size at most $(1-\varepsilon)|\Gamma|^{1/k}$. The S_k -sets are related to the following graph-theoretic problem: determine the largest possible minimum outdegree in a directed graph with no subgraph in $\{C_{2,2},\ldots,C_{k,k}\}$, where $C_{\ell,\ell}$ is the orientation of $C_{2\ell}$ with two maximal directed ℓ -paths. Contrasting with undirected cycles, the extremal minimum outdegree for $\{C_{2,2},\ldots,C_{k,k}\}$ is much smaller than that for any $C_{\ell,\ell}$. We count the directed Hamilton cycles in one of our constructions to improve the upper bound for a problem on Hamilton paths posed by Cohen, Fachini, and Körner. Joint work with Michael Tait.