STEVE KIRKLAND, University of Manitoba

An edge centrality measure based on Kemeny's constant

Given a connected graph G, Kemeny's constant $\kappa(G)$ is a parameter associated with the random walk on G that measures how easily the random walker circulates through the vertices of G. We consider a measure of edge centrality $c(\bullet)$ that is based on Kemeny's constant. In the special case that e is a cut edge of G whose deletion yields the disconnected graph $G_1 \cup G_2$, it turns out that $c(e) = \kappa(G) - \kappa(\widehat{G}_1) - \kappa(\widehat{G}_2)$, where \widehat{G}_1 (resp. \widehat{G}_2) is formed from G_1 (resp. G_2) by adding a loop at the vertex incident with e.

When G is a tree, we produce a formula for c(e) that is completely combinatorial. That formula yields attainable upper and lower bounds on c(e) for trees, and facilitates an analysis of the behaviour of c(e) when a branch of the tree is moved. Joint work in progress with Max Wiebe.