ANTON MOSUNOV, Cornell University

Numbers that are integrally representable by the homogenization of the minimal polynomial of $\tan(\pi/n)$

Let F(x,y) denote a binary form with integer coefficients of degree d>2 and non-zero discriminant. Let $R_F(Z)$ denote the number of all integers $\leq Z$ that are integrally representable by F. In 2019, Stewart and Xiao proved that there exists a positive constant C, which depends only on F, such that $R_F(Z) \sim CZ^{2/d}$. For every integer n>2, we estimate the constant C for $t_n(x,y)$, the homogenization of the minimal polynomial of $\tan(\pi/n)$.