RUI SUN, University of Alberta

Measure of Axiality for Convex Figures
For a convex body K in R^{2} with $\mu(K)=1$, the Kovner Besicovitch theorem states that one can inscribe a centrally symmetric (symmetric about a point) body of area at least $2 / 3$ inside K. The minimizer is given by the triangle, where the maximal inscribable centrally symmetric body has only area of $2 / 3$. In the spirit of this theorem, we consider the question: what is area of the largest convex body which we can inscribe in K that is symmetric about a line (we call this axiality)? Lassak showed that for any K, this number is at least $2 / 3$. Unlike in the centrally symmetric case, no minimizer was found to verify if this lower bound is sharp. In our paper, we are able to improve this bound to 0.695 . On the other hand, the known concrete examples of bodies with low axiality had an axiality of $2 \sqrt{2}-2 \approx 0.828$ which is attained by triangles and a specific parallelogram (and thus giving us an upperbound on the axiality of arbitrary convex bodies). Only recently, Choi discovered a quadrilateral which improved this upper bound to 0.816 . We found an example with axiality $\frac{1}{3}(\sqrt{2}+1)$ and believe this to be the minimizer. I will explain in my presentation of how we attain the improvements on the upper and lower bounds of axiality. This talk is based on a joint work with Ritesh Goenka, Kenneth Moore, and Ethan White.

