MOKSHAY MADIMAN, University of Delaware

Submodularity questions in convex geometry

I will present some results, obtained in collaboration with M. Fradelizi, M. Meyer, and A. Zvavitch, on the log-submodularity of the volume of Minkowski sums on different classes of compact convex sets. The underlying question is the following: given a class \mathcal{G}_n of compact convex sets in \mathbb{R}^n closed under Minkowski summation and affine transformations, and $A, B, C \in \mathcal{G}_n$, what is the best constant α in the inequality

$$|A + B + C| \cdot |A| \le \alpha |A + B| \cdot |A + C|,$$

where $|\cdot|$ denotes volume? This constant, which we may denote $\alpha(\mathcal{G}_n)$, has interesting interpretation, and it is particularly useful to identify cases where it is equal to 1, since in this case, it is intimately connected to inequalities for projections. If \mathcal{K}_n is the collection of compact convex sets and \mathcal{Z}_n is the collection of zonoids in \mathbb{R}^n , we show that $\alpha(\mathcal{K}_2) = \alpha(\mathcal{Z}_2) = 1$ and $1 = \alpha(\mathcal{Z}_3) < \alpha(\mathcal{K}_3) = 4/3$. We will also present some estimates and some conjectures for higher dimensions.