CHENGJUN YUE, Memorial University of Newfoundland

Around Poisson-Bessel potentials of fractional L^1 -Hardy-Sobolev spaces

Let $u_{\alpha}(x,t)$, $\alpha \in (0,2)$ be the solution of the equation

$$\Delta_{x,t}u_{\alpha}(x,t) + (1-\alpha)t^{-1}\partial_t u_{\alpha}(x,t) = 0$$

on $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times (0, \infty)$ subject to $u_\alpha(x, 0) = f(x)$ on \mathbb{R}^n . As the endpoint of the Poisson-Bessel potential u_α , the potential $u_0(x, t)$ solves the equation

$$\Delta_{x,t} \left(\ln t^{-1} \right) u_0(x,t) + t^{-1} \partial_t \left((\ln t^{-1}) u_0(x,t) \right) = 0$$

on \mathbb{R}^{n+1}_+ subject to $u_0(x,0) = f(x)$ on \mathbb{R}^n . The main goal of this paper is to characterize a nonnegative measure μ on \mathbb{R}^{n+1}_+ such that $f(x) \mapsto u_\alpha(x,t)$ induces a bounded embedding from the fractional L^1 -Hardy-Sobolev space $H^{\alpha,1}(\mathbb{R}^n)$, $\alpha \in (0,2)$ into the weak Lebesgue space $WL^q_\mu(\mathbb{R}^{n+1}_+)$, $q \in [1,\infty)$ and $f(x) \mapsto u_0(x,t)$ induces a bounded embedding from the Hardy $H^{0,1}(\mathbb{R}^n)$ into the Lebesgue space $L^q_\mu(\mathbb{R}^{n+1}_+)$, $q \in [1,\infty)$.

Based on these trace principles, we propose $(H^{\alpha,1}, L^q)$ model and $(H^{\alpha,1}, \log)$ model for image denoising, which significantly improve the reconstruction from images polluted by Gaussian noise or Poisson noise compared with the famous Rudin-Osher-Fatemi model.