WILLIAM MARTIN, Worcester Polytechnic Institute
Four-class Q-bipartite association schemes
A (symmetric) association scheme can be viewed as a real subalgebra \mathbb{A} of an algebra of square matrices over the reals in which every element is symmetric, which is closed under entrywise multiplication \circ and contains both I and J (the matrix of all ones). Let E be a matrix in \mathbb{A} and, for $0 \leq j \leq d=\operatorname{dim} \mathbb{A}$, denote by $E^{\circ j}$ the matrix whose entries are the $j^{\text {th }}$ powers of the entries of E. We say the association scheme is Q-polynomial (or co-metric) with Q-polynomial generator E if the linear spans $\mathcal{I}_{j}=\left\langle J, E, \ldots, E^{\circ j}\right\rangle$ form a chain of ideals in \mathbb{A} with $\mathcal{I}_{d}=\mathbb{A}$. It follows that \mathbb{A} admits a vector space basis $E_{0}, E_{1}, \ldots, E_{d}$ with $E_{i} E_{j}=\delta_{i, j} E_{i}$ where E_{i} is expressible as a polynomial of degree i applied entrywise to E. In this talk, we focus on the Q-bipartite case where $\left(E_{i} \circ E_{j}\right) E_{k}=0$ whenever $i+j+k$ is odd. We specialize Schoenberg's Theorem to this case and apply it to certain families with $d=4$. The talk is mostly based on joint work with Brian Kodalen.

