WILLIAM MARTIN, Worcester Polytechnic Institute *Four-class Q-bipartite association schemes*

A (symmetric) association scheme can be viewed as a real subalgebra \mathbb{A} of an algebra of square matrices over the reals in which every element is symmetric, which is closed under entrywise multiplication \circ and contains both I and J (the matrix of all ones). Let E be a matrix in \mathbb{A} and, for $0 \le j \le d = \dim \mathbb{A}$, denote by $E^{\circ j}$ the matrix whose entries are the j^{th} powers of the entries of E. We say the association scheme is Q-polynomial (or co-metric) with Q-polynomial generator E if the linear spans $\mathcal{I}_j = \langle J, E, \ldots, E^{\circ j} \rangle$ form a chain of ideals in \mathbb{A} with $\mathcal{I}_d = \mathbb{A}$. It follows that \mathbb{A} admits a vector space basis E_0, E_1, \ldots, E_d with $E_i E_j = \delta_{i,j} E_i$ where E_i is expressible as a polynomial of degree i applied entrywise to E. In this talk, we focus on the Q-bipartite case where $(E_i \circ E_j)E_k = 0$ whenever i + j + k is odd. We specialize Schoenberg's Theorem to this case and apply it to certain families with d = 4. The talk is mostly based on joint work with Brian Kodalen.