PETER DANZIGER, Toronto Metropolitan University

Colouring Kirkman triple systems

A weak δ -colouring of a block design is an assignment of δ colours to the point set so that no block is monochromatic. The weak chromatic number $\chi(S)$ of a block design S is the smallest integer δ such that S has a weak δ -colouring. It has previously been shown that any Steiner Triple System has weak chromatic number at least 3 and that for each $v \equiv 1$ or 3 (mod 6) there exists a Steiner triple system on v points that has weak chromatic number 3. Moreover, for each integer $\delta \geq 3$ there exist infinitely many Steiner triple systems with weak chromatic number δ .

In this talk we consider colourings of the subclass of Steiner triple systems which are resolvable, namely Kirkman Triple Systems. We show that for each $v \equiv 3 \pmod{6}$ there exists a Kirkman Triple System on v points with weak chromatic number 3. We also show that for each integer $\delta \geq 3$, there exist infinitely many Kirkman triple systems with weak chromatic number δ .