DON KREHER, Michigan Technological University
Divisible and transverse Bussey systems
A set-system of order N is a pair (X, B), where X is N-element set of points and B is a collection of subsets of X called blocks.
In 1852, Professor Dr. J. Steiner of Berlin, asked for which number N does there exist a set system containing no pairs that has order N and maximum block size k satisfying
(1) no block properly contains another block, and
(2) for all $t=2,3, \ldots, k-1$ every t-set that does not contain a block is contained in exactly one block of size $(t+1)$.
W.H. Bussey from the University of Minnesota in 1914 constructed the only known solution. His construction provided for each $k \geq 5$ a set-system of order $N=2^{k-1}-1$ and maximum block size k that satisfies Steiner's conditions. At the CMS 75 th +1 anniversary summer meeting, I presented our investigation on this problem. See:
C.J. Colbourn, D.L. Kreher and P.R.J. Östergård, Bussey systems and Steiner's tactical problem. Glas. Mat. Ser. III, web.math.pmf.unizg.hr/glasnik/forthcoming/pGM7100.pdf
Today's discussion will examine what happens when pairs are allowed as blocks. In particular we consider as blocks the edges of the complete multipartite graph $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ or its complement \bar{G}.

