AMIN BAHMANIAN, Illinois State University

Toward a Three-dimensional Counterpart of Cruse's Theorem
Completing partial latin squares is NP-complete. Motivated by Ryser's theorem for latin rectangles, in 1974, Cruse found conditions that ensure a partial symmetric latin square of order m can be embedded in a symmetric latin square of order n. Loosely speaking, this results asserts that an n-coloring of the edges of the complete m-vertex graph K_{m} can be embedded in a one-factorization of K_{n} if and only if n is even and the number of edges of each color is at least $m-n / 2$. We establish necessary and sufficient conditions under which an edge-coloring of the complete λ-fold m-vertex 3-graph λK_{m}^{3} can be embedded in a one-factorization of λK_{n}^{3}. In particular, we prove the first known Ryser type theorem for hypergraphs by showing that if $n \equiv 0$ $(\bmod 3)$, any edge-coloring of λK_{m}^{3} where the number of triples of each color is at least $m / 2-n / 6$, can be embedded in a one-factorization of λK_{n}^{3}. Finally we prove an Evans type result by showing that if $n \equiv 0(\bmod 3)$ and $n \geq 3 m$, then any q-coloring of the edges of any $F \subseteq \lambda K_{m}^{3}$ can be embedded in a one-factorization of λK_{n}^{3} as long as $q \leq \lambda\binom{n-1}{2}-\lambda\binom{m}{3} /\lfloor m / 3\rfloor$.
These results can be restated as results on embedding partial symmetric layer-rainbow latin cubes in partial symmetric layerrainbow latin cubes where all diagonal entries are empty.

