MINERVA CATRAL, Xavier University

Spectral properties of a structured matrix related to a system of second order ODEs
We consider real matrices of the form $C=\left[\begin{array}{cc}A & B \\ I & O\end{array}\right]$ where A, B are square matrices and I, O are the identity matrix and zero matrix, respectively. Such matrices arise from dynamical systems of second-order ordinary differential equations $\ddot{\mathbf{x}}=A \dot{\mathbf{x}}+B \mathbf{x}$ where A and B are real matrices of order n. Eigenvalue properties are studied for the sign pattern $\mathcal{C}=\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{D} & O\end{array}\right]$ of order $2 n$, where \mathcal{A}, \mathcal{B} are the sign patterns of A, B respectively, and \mathcal{D} is a positive diagonal sign pattern. This talk gives an overview of results from joint works with Adam Berliner, D.D. Olesky and P. van den Driessche.

