CHI HOI, University of British Columbia

Diophantine tuples over integers and finite fields
A set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ of distinct positive integers is a Diophantine m-tuple if the product of any two distinct elements in the set is one less than a square. There is a long history and extensive literature on the study of Diophantine tuples and their generalizations in various settings. In this talk, we focus on the following generalization: for each $n \geq 1$ and $k \geq 2$, we call a set of positive integers a Diophantine tuple with property $D_{k}(n)$ if the product of any two distinct elements is n less than a k-th power, and we denote $M_{k}(n)$ be the largest size of a Diophantine tuple with property $D_{k}(n)$. Using various tools from number theory, we show that there is $k=k(n)$ such that $k, n \rightarrow \infty$ and $M_{k}(n)=o(\log n)$, breaking the $\log n$ barrier. A key ingredient is to study the finite field model of the same problem. Joint work with Seoyoung Kim and Semin Yoo.

