ARTHUR BONKLI RAZAFINDRASOANAIVOLALA, Université Laval

Integers with a sum of co-divisors yielding a square
Finding elliptic curves with high ranks has been the focus of much research. Recently, with the goal of generating elliptic curves with a large rank, some authors used large integers n which have many divisors, amongst which one can find divisors d such that $d+n / d$ is a perfect square. This strategy is in itself a motivation for studying the function $\tau_{\square}(n)$ which counts the number of divisors d of an integer n for which $d+n / d$ is a perfect square. We show that $\sum_{n \leq x} \tau_{\square}(n)=c_{\square} x^{3 / 4}+O(\sqrt{x})$ for some explicit constant c_{\square}. Moreover, letting $\rho_{1}(n):=\max \{d \mid n: d \leq \sqrt{n}\}$ and $\rho_{2}(n):=\min \{d \mid n: d \geq \sqrt{n}\}$ stand for the middle divisors of n, we show that the order of magnitude of the number of positive integers $n \leq x$ for which $\rho_{1}(n)+\rho_{2}(n)$ is a perfect square is $x^{3 / 4} / \log x$. This is joint work with Jean-Marie De Koninck and Hans Schmidt Ramiliarimanana.

