ARTHUR BONKLI RAZAFINDRASOANAIVOLALA, Université Laval

Integers with a sum of co-divisors yielding a square

Finding elliptic curves with high ranks has been the focus of much research. Recently, with the goal of generating elliptic curves with a large rank, some authors used large integers n which have many divisors, amongst which one can find divisors d such that d + n/d is a perfect square. This strategy is in itself a motivation for studying the function $\tau_{\Box}(n)$ which counts the number of divisors d of an integer n for which d + n/d is a perfect square. We show that $\sum_{n \le x} \tau_{\Box}(n) = c_{\Box} x^{3/4} + O(\sqrt{x})$ for some explicit constant c_{\Box} . Moreover, letting $\rho_1(n) := \max\{d \mid n : d \le \sqrt{n}\}$ and $\rho_2(n) := \min\{d \mid n : d \ge \sqrt{n}\}$ stand for the middle divisors of n, we show that the order of magnitude of the number of positive integers $n \le x$ for which $\rho_1(n) + \rho_2(n)$ is a perfect square is $x^{3/4}/\log x$. This is joint work with Jean-Marie De Koninck and Hans Schmidt Ramiliarimanana.