## NEAL MADRAS, York University

Must random walk move rapidly on either a graph or its complement?
One way to measure how rapidly a random walk moves around a graph $G$ is by the Kemeny constant of the graph. Roughly speaking, if $G$ has $n$ vertices and its Kemeny constant is $O(n)$, then a random walk is not slow to visit a randomly chosen target vertex.
I shall outline a proof that for every $\epsilon>0$, there is a constant $\Psi$ with the following property: If $G$ has $n$ vertices, and every vertex has degree between $\epsilon n$ and $(1-\epsilon) n$, then either $G$ or its complement has its Kemeny constant less than $\Psi n$. The methods are mainly probabilistic, with the spectral gap playing a key role. Some stronger results and open questions will also be described.
This is based on joint work with Sooyeong Kim, Ada Chan, Mark Kempton, Steve Kirkland, and Adam Knudson.

