CHRIS GODSIL, University of Waterloo

Coefficient Matrices

If we are working with characteristic polynomials of graphs and X is a graph on n vertices, its coefficient matrix if the $n \times n$ matrix whose i-th row is the vector of coefficients of the characteristic polynomial $\phi(x \backslash i, t)$ of the i-th vertex-deleted subgraph of X.
There is an analog based on matching polynomials. Let $p(X, k)$ denote the number of matchings of X. The matching polynomial of X is

$$
\mu(X, t)=\sum_{k \geq 0}(-1)^{n-2 k} p(X, k) t^{n-2 k} .
$$

Matching polynomials share many of the properties of characteristic polynomials-for example their zeros are real, and the matching polynomial of a forest is equal to its characteristic polynomial. In the context of matching polynomials, the coefficient matrix has the coefficients of the polynomials $\mu(X \backslash i, t)$ as its rows.
My talk will introduce these matrices. I will present an application of the characteristic coefficient matrix to a graph invariant arising from continuous quantum walks, and an application of the matching coefficient matrix to the construction of pairs of non-isomorphic graphs with the same matching polynomial.

