ADAM KNUDSON, Brigham Young University
A Nordhauss-Gaddum type problem for the normalized Laplacian spectrum and graph Cheeger constant
For a graph G on n vertices with normalized Laplacian eigenvalues $0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ and graph complement G^{c}, we prove that

$$
\max \left\{\lambda_{2}(G), \lambda_{2}\left(G^{c}\right)\right\} \geq \frac{2}{n^{2}}
$$

We do this by way of lower bounding $\max \left\{i(G), i\left(G^{c}\right)\right\}$ and $\max \left\{h(G), h\left(G^{c}\right)\right\}$ where $i(G)$ and $h(G)$ and denote the isoperimetric number and Cheeger constant of G, respectively.

