SCOTT RODNEY, Cape Breton University

Bounded Weak Solutions of Second Order Linear PDEs with Data in Orlicz Spaces
Reporting on joint work with David Cruz-Uribe (UAlabama) and S. Francis MacDonald (CBU math student). For a nonnegative definite symmetric matrix valued function $Q=Q(x)$ in a bounded domain $\Omega \subset \mathbb{R}^{n}$ with $n \geq 3$, we consider weak solutions of Dirichlet problems for linear equations of the form

$$
(* *)-\frac{1}{v} \operatorname{Div}(\sqrt{Q} \nabla u)+\mathbf{H} R u-\frac{1}{v} S^{\prime}[\mathbf{G} u v]+F u=f-\frac{1}{v} T^{\prime}[g v]
$$

for $x \in \Omega v$-a.e. Here, the weight $v \in L^{1}(\Omega)$ satisfies $|Q(x)|_{o p} \leq k v(x)$ in Ω where k is a constant. R, S, T are n-tuples of first order vectorfields with adjoints $R^{\prime}, S^{\prime}, T^{\prime}$. The data functions f, g, coefficient functions $\mathbf{H}, \mathbf{G}, F$ and are assumed to belong to Orlicz classes associated to the Young functions

$$
A(t)=t^{\sigma^{\prime}} \log (e+t)^{q}, B(t)=A^{2}(t) \text { respectively }
$$

where $q>\sigma^{\prime}$, the dual exponent of $\sigma>1$ that describes the gain in a Sobolev inequality associated to $Q(x)$ and v. Under the assumption of a positivity condition on the vectorfields, we show that any non-negative weak solution u of equation (**) is bounded with

$$
\|u\|_{L^{\infty}(v ; \Omega)} \leq C\left(\|u\|_{Q H_{0}^{1}(\Omega)}+\|f\|_{L^{A}(\Omega)}+\|g\|_{L^{B}(\Omega)}\right)
$$

where C is independent of f, g, and u.

