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Reporting on joint work with David Cruz-Uribe (UAlabama) and S. Francis MacDonald (CBU math student). For a non-
negative definite symmetric matrix valued function Q = Q(x) in a bounded domain Ω ⊂ Rn with n ≥ 3, we consider weak
solutions of Dirichlet problems for linear equations of the form
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for x ∈ Ω v − a.e. Here, the weight v ∈ L1(Ω) satisfies |Q(x)|op ≤ kv(x) in Ω where k is a constant. R,S, T are n-tuples
of first order vectorfields with adjoints R′, S′, T ′. The data functions f, g, coefficient functions H,G, F and are assumed to
belong to Orlicz classes associated to the Young functions

A(t) = tσ
′
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where q > σ′, the dual exponent of σ > 1 that describes the gain in a Sobolev inequality associated to Q(x) and v. Under
the assumption of a positivity condition on the vectorfields, we show that any non-negative weak solution u of equation (**)
is bounded with
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where C is independent of f, g, and u.
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