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Let G be a graph. A set of vertices S of G is called a resolving set of G if every vertex of G is uniquely determined by its
vector of distances to the vertices in S. One can think of the vertices in a resolving set as “landmark” vertices. If an agent
is sitting at some vertex of the graph, and its distance to every landmark vertex is known, then one can determine the exact
location of the agent.
Imagine that there is a cost associated with each landmark vertex. Then one would be interested in finding a resolving set of
minimum cardinality in G; this is the well-studied metric dimension of G. Imagine further that we can add edges to G in a
highly cost effective manner. Then one would be interested in finding a resolving set of minimum cardinality across all graphs
H obtained by adding edges to G; we introduce this parameter as the threshold dimension of G.
We give a more geometrical description of those graphs with threshold dimension b, characterizing them as graphs that have
certain constrained embeddings in the strong product of b paths. We provide a sharp bound on the threshold dimension of G
in terms of the chromatic number. We also study irreducible graphs – those for which the threshold dimension is equal to the
metric dimension. This is joint work with Matthew Murphy and Ortrud Oellermann.
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