## THOMAS HILLE, Northwestern

Bounds for the Least Solution of Homogeneous Quadratic Diophantine Inequalities.
Let $Q$ be a non-degenerate indefinite quadratic form in $d$ variables. In the mid 80's, Margulis proved the Oppenheim conjecture, which states that if $d \geq 3$ and $Q$ is not proportional to a rational form then $Q$ takes values arbitrarily close to zero at integral points. In this talk we will discuss the problem of obtaining bounds for the least integral solution of the Diophantine inequality $|Q[x]|<\epsilon$ for any positive $\epsilon$ if $d \geq 5$. We will show how to obtain explicit bounds that are polynomial in $\epsilon^{-1}$, with exponents depending only on the signature of $Q$ or if applicable, the Diophantine properties of $Q$. This talk is based on joint work with P. Buterus, F. Götze and G. Margulis.

