ORIT RAZ, The Hebrew University of Jerusalem
Dimension-expanding polynomials and the discretized Elekes-Rónyai theorem
I will present a recent result, joint with Josh Zahl, asserting that most real bivariate polynomials are "dimension expanding" when applied to a Cartesian product. More concretely, if P is a polynomial that is not of the form $P(x, y)=h(a(x)+b(y))$ or $P(x, y)=h(a(x) b(y))$, then whenever A and B are Borel subsets of \mathbb{R} with Hausdorff dimension $0<\alpha<1$, we have that $P(A, B)$ has Hausdorff dimension at least $\alpha+\varepsilon$ for some $\varepsilon(\alpha)>0$ that is independent of P. This is an analogue of Elekes-Rónyai theorem, which is concerned with the cardinality of $P(A \times B)$ for finite sets A, B.

